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Research in free recall has demonstrated that semantic associations reliably influence the
organization of search through episodic memory. However, the specific structure of these
associations and the mechanisms by which they influence memory search remain unclear.
We introduce a likelihood-based model-comparison technique, which embeds a model of
semantic structure within the context maintenance and retrieval (CMR) model of human
memory search. Within this framework, model variants are evaluated in terms of their
ability to predict the specific sequence in which items are recalled. We compare three
models of semantic structure, latent semantic analysis (LSA), global vectors (GloVe), and
word association spaces (WAS), and find that models using WAS have the greatest
predictive power. Furthermore, we find evidence that semantic and temporal organization
is driven by distinct item and context cues, rather than a single context cue. This finding
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provides important constraint for theories of memory search.
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Introduction

Findings from list-learning paradigms such as free recall
demonstrate that the temporal structure of a learning
experience has an important influence on how studied
materials are remembered. The effects of this temporal
structure are evident in the primacy and recency effects
of free recall (Murdock, 1962). Furthermore, temporal
structure influences the order in which memories are
retrieved; participants tend to successively recall items
that were presented adjacent to one another in the study
list (Kahana, 1996). Although much theoretical work has
focused on understanding the effects of temporal structure
on memory (e.g. Brown, Neath, & Chater, 2007; Howard &
Kahana, 2002a; Raaijmakers & Shiffrin, 1980), research has
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demonstrated that the prior experience of a participant
also strongly influences search of episodic memory, in
the form of semantic organization, the tendency for partic-
ipants to successively recall items that are semantically
related to one another (Bousfield, 1953; Glanzer, 1969;
Howard & Kahana, 2002b; Romney, Brewer, & Batchelder,
1993). Semantic organization (also known as semantic
clustering) is observed both when a list contains obvious
taxonomic category structure (Bousfield, 1953; Puff,
1966), as well as when there is no systematic semantic
structure to the list (Howard & Kahana, 2002b; Romney
et al, 1993; Schwartz & Humphreys, 1973). Although
empirical work has established the importance of semantic
knowledge for shaping new episodic memories, there is lit-
tle consensus about the structure of semantic knowledge
or the specific mechanisms that mediate its influence on
memory search (Cohen, 1963; Kimball, Smith, & Kahana,
2007; Polyn, Norman, & Kahana, 2009; Sirotin, Kimball, &
Kahana, 2005). Furthermore, efforts to characterize
semantic organization are complicated by the simultaneous
influence of temporal organization on recall sequences
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(Howard & Kahana, 2002b; Howard, Venkatadass, Norman,
& Kahana, 2007; Polyn, Erlikhman, & Kahana, 2011). Here,
we developed a set of computational models to test
different ways that temporal and semantic information
might influence memory search during free recall.

Measurement of semantic organization

In order to measure semantic organization, it is neces-
sary to specify the semantic relatedness of the studied
items. Early examinations of semantic organization
focused on the effect of coarse semantic structure based
on taxonomic category membership (e.g. Bousfield, 1953;
Cohen, 1963; Roenker, Thompson, & Brown, 1971). More
recently, theoretical and computational advances in char-
acterizing semantic knowledge have made it possible to
calculate more sophisticated measures of semantic simi-
larity, leading to development of a variety of models of
semantic structure which allow one to assign a related-
ness/similarity score to any pair of words in a corpus or
word pool (Griffiths, Steyvers, & Tenenbaum, 2007;
Jones & Mewhort, 2007; Lund & Burgess, 1996; Landauer
& Dumais, 1997; Romney et al., 1993; Steyvers, Shiffrin,
& Nelson, 2004). Despite this profusion of semantic
models, it is unclear which best corresponds to the
structure of semantic memory in humans.

In the domain of list-learning, the structure of a per-
son’s semantic memory is thought to give rise to semantic
organization in their recall sequences. If all pairs of items
in a study list have been assigned semantic relatedness
scores, semantic organization can be quantified by examin-
ing the similarity scores of neighboring pairs of items in
the recall sequence. These scores are then compared to a
baseline measure, representing the expected distribution
of similarity scores in the absence of semantic influence.
In many cases, this baseline measure has been modeled
in terms of the expectation of the organizational statistic
given a random ordering of the recalled words (Bousfield,
1953; Roenker et al., 1971; Stricker, Brown, Wixted,
Baldo, & Delis, 2002). This assumption of random sampling
is problematic, as it fails to take temporal influences on
recall into account. Romney et al. (1993) developed a
method that accounted for differences in memorability of
items from different serial positions (thus accounting for
the influence of the primacy and recency effects on seman-
tic organization), but this measure did not account for
sequential dependencies due to temporal organization.

Temporal organization is a near-ubiquitous phe-
nomenon in free-recall tasks (Kahana, 1996; Kahana,
Howard, & Polyn, 2008; Sederberg, Miller, Howard, &
Kahana, 2010) that can influence measures of semantic
organization (Morton et al., 2013; Puff, 1966). Because of
temporal organization, traditional measures of semantic
organization which do not take the ordering of the input
list into account, such as ratio of repetition (Bousfield,
1953), adjusted ratio of clustering (Roenker et al., 1971),
and list-based clustering (Stricker et al., 2002), will be
inflated whenever semantically related items are pre-
sented in proximity. This is a particularly critical issue
when examining how semantic organization is influenced
by manipulations of presentation order (e.g. Borges &

Mandler, 1972; Glanzer, 1969; for a review, see Puff,
1974). Morton et al. (2013) demonstrated a permutation-
based technique that can be used to estimate the baseline
level of semantic organization expected in the presence of
temporal organization. They measured free-recall behavior
on both mixed lists composed of items from different cat-
egories, and pure lists with items from a single category.
They randomly relabeled the set of pure list items with
the category labels from a mixed list and calculated a
semantic organization score for each of these relabeled
lists, to measure the tendency for same-category items to
be grouped together during recall. This randomization
was repeated many times to obtain a baseline distribution
of semantic organization scores. Semantic organization
scores calculated for the mixed lists could then be
compared to this distribution. Although this technique
provides a useful estimate of the influence of temporal
organization on measures of semantic organization, it
relies on the assumption that semantic and temporal infor-
mation do not interact with one another, an assumption
that is unlikely to be valid (Glanzer, 1969; Howard &
Kahana, 2002b; Polyn et al., 2011).

Simulating influences on recall organization

It is unclear whether it is possible to develop a simple
measure of semantic or temporal organization that is pro-
cess pure, given that these forms of information interact
with one another in the cognitive system. In order to
understand the nature of these interactions, researchers
have developed computational models designed to
characterize the joint influence of semantic and temporal
structure on behavior in memory tasks (e.g., Anderson,
1972; Batchelder & Riefer, 1980; Kimball et al., 2007;
Polyn et al., 2009; Romney et al., 1993; Sirotin et al.,
2005; Socher et al., 2009). In order to properly account
for the influence of semantic information on behavior, each
of these models must specify the semantic relatedness of
any pair of items that might be studied. These semantic
relatedness values have been drawn from existing models
of semantic knowledge, such as latent semantic analysis
(LSA; Landauer & Dumais, 1997) and word association
spaces (WAS; Steyvers et al., 2004).

In the domain of free recall, computational models of
memory are typically evaluated through a generative
process: The model is used to generate a large number of
synthetic recall sequences, and a number of summary
statistics are calculated, such as the probability of recall
by serial position, or a semantic organization score. These
summary statistics are then compared to the same
summary statistics calculated from the recall sequences
collected in the actual experiment. The fitness of the model
is then quantified in terms of how well the model's
summary statistics match the observed summary statistics
(e.g. Brown et al, 2007; Raaijmakers & Shiffrin, 1980;
Sederberg, Howard, & Kahana, 2008). However, a difficulty
arises when one wishes to assess the model’s predictions
regarding semantic organization: The same semantic
model can be used to create the semantic associative struc-
tures in the model, and to calculate the degree of semantic
organization in the recall sequences generated by the
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model. This leads to a circularity that can complicate the
evaluation of the validity of the model (as examined by
Manning & Kahana, 2012; Polyn et al., 2009).

A predictive framework for evaluating models of recall
organization

We present a computational modeling framework
based on the context maintenance and retrieval (CMR)
model. CMR is well-suited to examine the nature of tempo-
ral and semantic interactions in free recall, as it makes
detailed predictions regarding behavior in this paradigm
(Healey & Kahana, 2014; Lohnas, Polyn, & Kahana, 2015;
Polyn et al., 2009), including higher-order effects of com-
pound temporal cuing (Lohnas & Kahana, 2014). We used
a recently developed variant of CMR that allows direct
calculation of the probability of entire recall sequences
(Kragel, Morton, & Polyn, 2015), allowing for the exact
calculation of the likelihood of observing a set of
free-recall data according to the model. Within our
modeling framework, we constructed competing model
variants by combining one of three different models of
semantic similarity with one of three different models of
how temporal and semantic information interact. Along
with a baseline model with no semantic structure, this
yields ten model variants, which are described in more
detail below. We examine the behavior of these model
variants in three free-recall experiments which vary on a
number of methodological characteristics.

To contrast different model variants, we used a maxi-
mum likelihood statistic to determine how well a given
model variant can predict the behavior of the participants
in an experiment. For each model variant, we first opti-
mized a set of parameters to fit each participant in an
experiment. These parameters determine the behavior
and predictions of the model, allowing us to calculate the
likelihood of each recall event, conditional on both the
structure of the study list and the specific sequence of
recalls leading up to that event. The maximum likelihood
then provides an unbiased measure for evaluating compet-
ing models of memory search. While evaluating models
based on maximum likelihood provides important benefits
such as high consistency and efficiency in parameter
estimation (Myung, 2003), little work has used this tech-
nique with models of free recall (Farrell & Lewandowsky,
2008; Socher et al., 2009). The dearth of likelihood-based
fitting in models of free recall may stem from the historical
emphasis on fitting certain summary statistics, such as the
serial position curve (e.g. Sederberg et al., 2008), as well as
the common use of simulation models for which exact
likelihoods cannot easily be calculated (e.g. Davelaar,
Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005;
Farrell, 2012; Polyn et al., 2009; Raaijmakers & Shiffrin,
1980; Sederberg et al.,, 2008). In addition to comparing
models based on maximum likelihood, we also examined
summary statistics that focus on specific aspects of recall
behavior. Using the best-fitting parameters for each
participant, we used the model to generate recall
sequences. We then calculated the same set of summary
statistics for the observed data and model-generated data
to determine whether model variants can account for

specific theoretically important empirical phenomena
observed in the experiment.

The CMR model is one of a class of retrieved-context
models which propose that a feature-based representation
of each studied item causes item-specific information to be
integrated into a gradually changing representation of
temporal context (Kahana et al., 2008; Polyn & Kahana,
2008). When an item is recalled, the context associated
with it is reactivated, providing a good cue for items
studied nearby in the list and resulting in temporal organi-
zation. We use our framework to examine how temporal
and semantic information interact during memory search.
While each model variant we examined used temporal
context as a cue, we examined the possibility that item
cues might also be involved in probing semantic
associations. The first type of cuing model we examined
is the version of CMR described by Polyn et al. (2009).
This model uses context-based semantic cuing: The
item-specific information integrated into temporal context
activates a set of pre-experimental semantic associations,
such that the same contextual representation guides both
temporal and semantic organization (Fig. 2a, right side).
We contrasted this with a version of CMR in which
temporal and semantic organization are more indepen-
dent. This second model variant uses item-based semantic
cuing, in which the feature-based representation of
the retrieved item directly activates pre-experimental
semantic associations, resulting in semantic organization
during memory search (Fig. 2a, center). In the item-based
semantic cuing model, temporal organization is guided
by the temporal context representation, but semantic
organization is guided by the reactivated representation
of the remembered item. The predictive power of these
two model variants were compared with that of a third,
in which both item-based and context-based semantic
cuing mechanisms operate simultaneously. Each model
variant simply changes the locus of semantic influences.
For all three variants, temporal organization is guided by
the temporal context representation.

Each of the three cuing models is combined with each of
three distinct vector space models of semantic similarity:
Latent Semantic Analysis (LSA), Word Association Spaces
(WAS), and Global Vectors (GloVe). Each vector space
model constructs a representational vector for each word
in a corpus. The representational similarity of any two
vectors (calculated by the cosine operation) determines
the strength of semantic association between the two
corresponding items.

LSA is a well-established vector space model of seman-
tic similarity that is based on the co-occurrence statistics
of words in a large text corpus (Landauer & Dumais,
1997). The corpus is partitioned into distinct documents,
and each word is assigned a representational vector speci-
fying the set of documents in which it occurs. The dimen-
sionality of this vector is reduced using singular value
decomposition (SVD), which helps the model infer indirect
relationships between words. If two words appear along-
side similar sets of words across many documents, they
are assigned similar representational vectors. LSA has been
shown to account for some aspects of semantic organiza-
tion in free recall (Polyn et al., 2009; Sirotin et al., 2005).
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WAS is another well-established vector space model
based on data from a large set of free-association norms
(Steyvers et al., 2004). Representational vectors specify
which words were associated with one another in the orig-
inal free-association study (Nelson, McEvoy, & Schreiber,
2004), and like LSA, SVD is used to reduce the dimension-
ality of those vectors. Prior work suggests that WAS can
predict category clustering (Sirotin et al, 2005) and
intrusions (Steyvers et al., 2004) more accurately than
LSA, but comparing WAS and LSA using standard
behavioral measures is difficult given differences in the
distributions of similarity values in the two models
(Howard et al., 2007; Manning & Kahana, 2012).

GloVe is a recently developed vector space model that,
like LSA, is based on co-occurrence statistics in a text
corpus, but which also contains characteristics of
prediction-based semantic models (Pennington, Socher, &
Manning, 2014). GloVe has been shown to outperform
LSA (and a number of other semantic models) on several
validation tests, including word similarity, named entity
recognition, and word analogies (Pennington et al., 2014).

Each of the model variants (combining each cuing
model with each semantic similarity model) is assessed
using the complementary measures of fit to a set of
summary statistics and overall maximum likelihood. The
summary statistics show whether a given model variant
produces the relevant empirical phenomena observed in
the experiments. However, the summary statistics that
measure semantic organization are often calculated in
terms of the same vector space models used to define
semantic structure in the cognitive model. The likelihood
statistic avoids this circularity by quantifying model
performance in terms of the model’s ability to predict the
specific sequence of recalls made on every trial.

Methods

We tested competing models of temporal and semantic
organization based on their ability to predict recall
behavior in three free-recall experiments. These experi-
ments differed in a number of characteristics, including
stimulus pool, presentation time, encoding task, and delay
before recall, allowing us to assess the generality of our
conclusions across a range of experimental procedures.

Experiment 1

Participants

Participants included 41 people (14 female) between
the ages of 18 and 30. Participants were recruited as part
of a series of studies designed to examine electrophysio-
logical correlates of encoding and retrieval in free recall.
We focus on the first study of the series, which included
4 sessions for each participant. Analyses on the data from
these participants appear in Lohnas, Polyn, and Kahana
(2011), Lohnas and Kahana (2014), and Lohnas et al.
(2015).

Stimuli and procedure
A pool of 1655 nouns were selected from a larger pool
of 5018 words that formed the corpus for the word

association spaces (WAS) model (Steyvers et al., 2004).
These words were identified as nouns using the CELEX2
English database (Baayen, Piepenbrock, & Gulikers, 1995),
and were identified (by three raters) as being appropriate
for the binary classification tasks used in the free-recall
experiment (size and animacy judgments, described
below). Words were excluded if they were abstract or were
highly ambiguous for either of the judgment tasks. Three
additional raters performed the size and animacy
judgments on the set of 1655 nouns; these ratings were
used to balance the lists with regard to the classification
responses, as described below. During the course of the
study, an additional 17 words were excluded because they
sounded similar to other words in the pool. This final set of
1638 words was the same as those used in Expt. 3,
described below.

Each participant performed 4 experimental sessions
(held on separate days), each of which contained 12 trials.
Each trial consisted of a study period, followed by a
free-recall period. There were two types of trials: control
trials and task-shift trials. On control trials, every word in
the list was studied with the same encoding task. On
task-shift trials, half of the items were studied with each
encoding task. Within each session, each participant
performed 6 control trials, for a total of 24 trials across
the four sessions. Here, we focus on these control trials,
and all analyses are carried out without regard to
encoding task.

During the study period, a series of 24 words was
presented, one word at a time. Each word remained on
the screen for 3 s, and was followed by a blank 0.8-1.2 s
inter-stimulus interval. Each word was presented with a
task cue above it, indicating the judgment that the partic-
ipant should make for that word (either judging whether
the item would fit in a shoebox, or whether the item was
living or nonliving). Participants indicated their judgment
for each word by pressing a key.

After the final item was presented, a row of asterisks
and a beep indicated the start of the recall period.
Participants were given 90s to vocally recall as many
words as they could remember from the most recent list,
in whatever order they came to mind.

The binary judgments from the three raters (described
above) were averaged together to assign each word an
average response for each encoding task. These average
responses were used to ensure that the study lists were
well balanced in terms of the judgments, making sure that
no list was dominated by a particular class of response.
Items judged big or living were assigned a value of 1, and
small or nonliving items were assigned a value of 0. As such,
a word that was judged big by two of the three raters was
assigned a value of 0.66 for the size judgment; if all three
raters judged the word to be nonliving, it would be assigned
avalue of 0 for the animacy judgment. The words on a given
list were chosen such that the average value of the words
judged with a given task fell between 0.3 and 0.7.

LSA similarity values were not available for two
words that were used in Experiment 1. Therefore, we
excluded from all analyses 27 lists that included
either of those words, leaving 957 trials considered
here.
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Experiment 2

Participants

Participants included 48 people between the ages of 18
and 30. Scalp EEG was recorded in a subset of these partic-
ipants; results from those participants were previously
reported by Sederberg et al. (2006).

Stimuli and procedure

The experimental procedure was described in detail
by Sederberg et al. (2006). Stimuli consisted of 308 com-
mon nouns (Friendly, Franklin, Hoffman, & Rubin, 1982).
Participants studied and recalled 48 lists which each
contained 15 words drawn from the stimulus pool. Words
did not appear more than once in a given list, but appeared
in 1-3 lists for a given participant. Each word appeared for
1.6 s, followed by an inter-stimulus interval of 0.8-1.2s.
Participants were instructed to visualize each word as it
was presented. Immediately following each list presenta-
tion, participants performed an arithmetic distraction task
for 20s. After the distraction period, participants were
given 45 s to vocally recall items from the previous list in
any order they wished.

WAS similarity values were not available for 11 words
that were used in Experiment 2. Therefore, we excluded
from all analyses 992 trials that included any of these
words, leaving 1312 trials considered here.

Experiment 3

Participants

Participants included 126 people between the ages of
17 and 30, from the Penn Electrophysiology of Encoding
and Retrieval Study (PEERS). Scalp EEG was recorded in
these participants, and results from these participants
were previously reported by Healey and Kahana (2014).

Stimuli and procedure

The experimental procedure was described in detail by
Healey and Kahana (2014); we describe the relevant
details here. Stimuli were the 1638 nouns described above
(Expt. 1). Participants studied and recalled 112 lists which
each contained 16 words drawn from the stimulus pool.
Different lists had different encoding task conditions; here,
we focus on the 28 lists for each subject that were studied
with no explicit encoding task. Word association spaces
similarity values (Steyvers et al., 2004) were used to group
words into four similarity bins (high similarity:
cos(0) > 0.7; medium-high similarity: 0.4 < cos(0) < 0.7;
medium-low similarity: 0.14 < cos(0) < 0.4; low similar-
ity: cos(0) < 0.14). In each list, two pairs of items from
each of the groups were arranged such that one pair
occurred at adjacent serial positions and the other pair
was separated by at least two other items. Each word
appeared for 3 s, followed by an inter-stimulus interval of
0.8-1.2s.

After the final item was presented in each trial, there
was a 1.2-1.4 s delay, followed by the presentation of a
row of asterisks and a beep indicating the start of the recall
period. Participants were given 75s to vocally recall as

many words as they could remember from the most recent
list, in whatever order they came to mind.

LSA similarity values were not available for two words
that were used in Experiment 3. Therefore, we excluded
from all analyses 47 lists that included either of those
words, leaving 2725 trials considered here.

Models of semantic associations

The word association spaces (WAS) algorithm (Steyvers
et al., 2004) provides similarity scores for all word pairs in
a corpus of 5018 words, a subset of which were used to
create the study lists in Experiments 1 and 3. These
similarity scores are derived from the University of South
Florida free-association norms (Nelson et al., 2004). We
used the 400-dimension singular value decomposition of
the S;”’ measure described by Steyvers et al. (2004), which
is freely available online.! We defined the WAS similarity
between two words as the cosine of the angle between their
corresponding vectors.

The latent semantic analysis (LSA) algorithm (Landauer
& Dumais, 1997) was used to derive similarity scores for all
word pairs in the Touchstone Applied Science Associates,
Inc. (TASA) corpus. This technique produces a 400
dimensional vector for each word. We defined the LSA
similarity between two words as the cosine of the angle
between their corresponding vectors.

We used publicly available 300 dimensional GloVe vec-
tors? that were trained on a combination of the Gigaword 5
corpus (Parker, Graff, Kong, Chen, & Maeda, 2011) and a
dump of Wikipedia article text from 2014. The corpus was
tokenized and converted to lowercase, and a vocabulary
was created with the 400,000 most frequent words.
Co-occurrence was based on a decreasing weighting
function, where words that are d words apart contribute
1/d to the co-occurrence count. As with WAS and LSA, we
calculated similarity between each pair of words based on
the cosine similarity of their vectors.

Fig. 1 provides a visualization of the semantic similarity
values for the different semantic models that we consid-
ered.® The circle of words represents a sample study list
from Experiment 1. The weight of the line connecting two
words indicates how strongly associated the two words
are. These schematic figures highlight a difference between
the co-occurrence based models (LSA and GloVe) and
WAS: While WAS has relatively sparse connectivity, LSA
and GloVe have many connections of moderate strength
(see also Manning & Kahana, 2012). We examined the
degree to which the different semantic models captured
similar relations between items by calculating rank
correlations between the similarity values from each model.
For the 1655 words included in Experiments 1 and 3, each
pair of models demonstrated a significant but small
Spearman’s correlation (LSA-GloVe: p = 0.366, p < 0.0001;
GloVe-WAS: p =0.232, p < 0.0001; LSA-WAS: p =0.199,

! http://psiexp.ss.uci.edu/research/software.htm.

2 http://nlp.stanford.edu/projects/glove/.

3 Visualization created using code modified from the Schemaball package:
http://www.mathworks.co.uk/matlabcentral/fileexchange/42279-schemaball.
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Fig. 1. Cosine similarity between pairs of items in a sample study list from Experiment 1, for different models of semantic similarity. Greater line saturation
and thickness indicate greater estimated similarity. Similarity values for different models were scaled to be on the same range. (a) Similarity based on latent
semantic analysis (LSA). (b) Similarity based on the global vectors (GloVe) model. (c) Similarity based on word association spaces (WAS).

p < 0.0001), demonstrating that the interitem similarities
predicted by the different models were largely distinct.

Model of memory search

We used a modified version of the context maintenance
and retrieval model (CMR) as a framework to evaluate the
impact of different models of semantic associations and
different semantic cuing mechanisms on behavior in free
recall. CMR consists of two interacting representations: a
context layer and a feature layer. Two associative matrices
(feature-to-context, and context-to-feature) allow these
representations to influence one another. When an item
is studied, a representation of it becomes active on the fea-
ture layer. This representation is projected through the
feature-to-context associative connections, which causes
contextual information associated with the item to be
retrieved and integrated into the context representation.
This contextual integration mechanism causes the contex-
tual representation to change slowly over time. Thus, at
any moment, context reflects a recency-weighted average
of information related to recently presented stimuli.
Studied items become associated to the context that was
active when they were presented, so that context can serve
as a cue to retrieve items, and recalled items can retrieve
the context that is associated with them. When an item
is recalled, its feature representation is reactivated, which
allows the system to reinstate the context representation
associated with the item. This reinstated context can then
be used to cue for another item on the list. Items that are
associated with similar states of context (such as adjacent
items in a list) tend to be good cues for one another. See
Formal description of the model for further details about
model mechanisms. The mechanisms of item-context asso-
ciation, contextual cuing, and context reinstatement allow
the model to account for a number of behavioral effects in
free recall, including recency and temporal contiguity
effects (Howard, 2004; Howard & Kahana, 2002a;
Howard, Fotedar, Datey, & Hasselmo, 2005; Polyn et al.,
2009; Sederberg et al., 2008).

Polyn et al. (2009) introduced CMR, which is based on
the temporal context model (TCM; Howard & Kahana,

2002a). CMR added, among other things, a mechanism to
explain how semantic associations influence recall.
Under this framework, the model is initialized with
pre-experimental associations representing a person’s
prior experience with an item. When an item is studied
or recalled, these associations cause the system to
retrieve the item’'s pre-experimental context. This
pre-experimental context is associated with the item’s
semantic associates. As such, when this pre-experimental
context is used as part of a retrieval cue, the item’s
semantic associates are likely to be retrieved next, giving
rise to semantic organization. We refer to this mechanism
as context-based semantic cuing (Fig. 2); when this
mechanism is in operation, the context representation is
responsible for both temporal and semantic organization.

Context-based semantic cuing can be contrasted
with an alternative mechanism, which we refer to as
item-based semantic cuing. Using this mechanism, semantic
associations link item representations directly to one
another (without using the context representation as a
mediator). During free recall, when an item is recalled, its
reactivated representation serves as a direct cue for
semantically related items. The item-based semantic cuing
mechanism has been used as part of several versions of the
search of associative memory (SAM) model (Kahana, 2012;
Kimball et al., 2007; Raaijmakers & Shiffrin, 1980; Sirotin
et al., 2005). In the item-based semantic cuing models
we examine here, although item representations are used
to probe semantic associations, the context representation
still projects through episodic associations as in other
versions of CMR.

With item-based semantic cuing, semantic organization
is only influenced by the just-recalled item, as depicted in
Fig. 2b. In contrast, with context-based semantic cuing, any
items whose pre-experimental context is part of the con-
text representation will influence semantic organization,
because the context retrieved with each recalled item only
partially updates the context representation (Lohnas &
Kahana, 2014). Thus, semantic organization will be influ-
enced by the set of items recalled prior to the current
recalled item, though the semantic identity of the most
recently retrieved item will have the most influence. In
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Fig. 2. Illustration of cuing mechanisms used by the different model variants. (a) Schematic of model variants. Left: Model with no semantic associations.
Recall is driven solely by episodic associations between items and context. Center: Temporal context influences recall through episodic cuing as before, but
retrieved items also will cue for other semantically related items, providing additional support for those items. Right: Only context is used as a cue to
retrieve items; context projects through both episodic and semantic associations. (b) Schematic of predictions for item-based semantic cuing and context-
based semantic cuing, after learning a sample list and recalling the sequence “tree”, “cat”, “queen”. In the item-based semantic cuing model, only the last
recalled item, “queen,” is used as a semantic cue, resulting in stronger support for the related item “king.” In the context-based semantic cuing model, the
entire current state of context is used as a semantic cue. Since “cat” is still somewhat active in context, it provides additional support for the related item

“dog.”

addition to examining the item-based semantic cuing and
context-based semantic cuing models, we also evaluated
whether semantic cuing might involve a weighted combi-
nation of item and context information. Note that while
these different model variants used different types of
semantic cuing, each of them used context-based episodic
cuing (Fig. 2), allowing each variant to account for the tem-
poral organization observed in free recall (Kahana, 1996).

The version of CMR described by Polyn et al. (2009)
used context-based semantic cuing. Under this mecha-
nism, semantic organization after recall of a given item
should be sensitive to the items that were recalled prior
to that item. Polyn et al. (2009) showed that this version
of CMR can produce a reasonable overall amount of
semantic organization while simultaneously accounting
for temporal and source organization. However, that study
focused on semantic organization conditional only on the
just-recalled item; the more nuanced predictions of the
model have not been evaluated.

Here, we use the CMR framework to assess the relative
validity of the LSA, GloVe, and WAS models of semantic
association, and to contrast the item-based, context-
based, and item + context semantic cuing mechanisms
described above. To accomplish this, each of the cuing
mechanisms was paired with each model of semantic asso-
ciation. For each of the three experiments reported here,

we evaluated a base model with no semantics, and every
combination of semantic association model and cuing
mechanism. We first compared these models based on
their ability to predict the sequences of individual recalls
that were observed in the experiment.

Likelihood calculation

During each recall period, the participant produces a
sequence of responses. This recall sequence is described
as a series of recall events, followed by a recall termination
event. For simplicity, we excluded repeated items and
intrusions from the set of recall events, so that the
remaining recall events corresponded to correct recalls.
We discuss the impact of excluding repeats and intrusions
below in Exclusion of recall errors. For each recall event,
the model is used to calculate each individual item’s
probability of being recalled from the list, as well as the
probability of recall termination (Fig. 3). From this set of
probabilities, we record the probability of whatever recall
event actually took place (for example, recalling item 24
in the list), and take the logarithm of this probability
(to avoid precision issues caused by very low probabili-
ties). Thus, if the participant recalled item 24, the model
simulates recall of item 24, which involves reactivation of
the item representation and updating of the context
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Fig. 3. (a) Schematic of recall prediction for one list, in our modeling framework. First, the study period is simulated and the model learns the list. Then
retrieval is simulated, and the model calculates the probability of recalling each of the items, as well as the probability of stopping recall. We then record the
predicted probability of the observed behavior. If an item was recalled, we update the state of the model conditional on that recall. This process is repeated
until the entire observed recall sequence has been simulated. (b) Schematic example of one list with five words. At each step of the recall process, the model
makes predictions conditional on the observed behavior up to that point.

representation. The updated model is then used to predict
the next event in the recall sequence (either another
successful recall, or termination), and the logarithm of this
probability is recorded. This process is repeated until we
reach the end of the recall sequence being examined. At
this point the model is re-initialized and applied to the
next list of the experiment. The log-transformed probabil-
ities of all recall and termination events in the experiment
are summed to obtain the log-likelihood of the entire data-
set, given a specific model and a specific set of parameters.

Model comparison

For each model variant, we used a parameter optimiza-
tion technique known as differential evolution to find the
parameter set that maximized the likelihood of the
observed data (Storn, 2008). We optimized the parameters
separately for each individual participant. We used a
MATLAB-based implementation of differential evolution
based on code developed by Price, Storn, and Lampinen
(2005). We used a variant of the DE/best/1/bin method
described by Storn (2008), with some modifications to
make search more robust. For each search through param-
eter space, we began with 1000 parameter sets at ran-
domly chosen points in the parameter space. For each
iteration of the search, the likelihood of the data given
the current parameters was evaluated at each point. Then
candidate vectors were evaluated to determine the
composition of the next generation of the individuals.

First, mutated vectors for generation g,vig, were cre-
ated from the current population vectors X;, according to

Vjig = Xjbestg 1+ (ﬂj.i,g +F)(Xjr1g — Xjr2g), (1)

where v, is an element j of the mutated vector i for
generation g,Xpest, iS a vector randomly sampled with
replacement from the top 5% of points, F is a scaling factor
that we set to 0.85, #;;, is uniformly distributed random
jitter between 0 and 0.001, and X1, and X, are vectors
randomly sampled from the original population. To
enhance diversity, candidate vectors u;; were created
using a crossover step, where each element of each
candidate vector, u;;,, was set according to

if rand[0,1] < Cr
Ujig = {

otherwise,
where the crossover probability Cr was set to 0.9.

To prevent premature convergence, candidate vectors
were sometimes selected even when they had a lower
likelihood. The candidate vector was accepted with
probability &, defined as

L(uig)
L(xi,g)) 7

where L(u;,) and L(x;¢) are the likelihoods of the candidate
and original vectors, respectively.

[terations of the algorithm were run until the maximum
log likelihood over all parameter sets examined so far had

e @

Xjigs

¢ =min (17 3)
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not changed more than 0.0001 over the last 100 genera-
tions. Each search was repeated 15 times for each subject
with different random starting points, and the parameter
set with the greatest log likelihood over all the searches
was selected. If, for a given subject, the searches failed to
find a greater or equal likelihood for a more complex
model compared to a simpler nested model (e.g. a
semantic model compared to the base model), the best
parameter set for the complex model was set to the
best-fitting parameter set for the simpler model.

Model performance was quantified using the Akaike
Information Criterion (AIC; Wagenmakers & Farrell, 2004)
and the Bayesian Information Criterion (BIC; Schwarz,
1978). For each model, we calculated AIC with a correction
for finite samples:

2V(V +1)

AIC = ~2logL+2V + =55 (4)

where L is the maximum likelihood value for the candidate
model, V is the number of free parameters, and n is the
number of estimated data points.

We also calculated BIC according to:

BIC = —2logL + Vlogn (5)

We compared model performance using AIC weights,
which indicate the probability that each model (of K
competing models) generated the observed data, under
the assumption that one of the models generated the data.
The AIC weight for a given model i, w;AIC, is defined as:

exp (—1AAIC)
Sk €xp (— 1 ALAIC)
where AAIC is the difference in AIC. between a given
candidate model and the best-fitting model in the set.

BIC weights were calculated in the same manner,
substituting BIC for AIC (Wagenmakers & Farrell, 2004).

WAIC =

, (6)

Analysis of recall behavior

We used a set of summary statistics to characterize the
recall performance of the participants and to further
characterize the performance of each optimized model
variant. In order to calculate these summary statistics on
an optimized model variant, we first used the model to
generate simulated recall sequences, as follows. For each
recall attempt, we calculated the probabilities of each
recall event (recalling an item or stopping recall) using
the same procedure described in Likelihood calculation.
We then sampled an event at random using this probabil-
ity distribution and updated the state of the model accord-
ingly. Each recall period was simulated in this manner
until a stop event was chosen. To calculate summary statis-
tics for each model, we simulated each list in the experi-
ment 100 times and calculated each statistic averaged
over the 100 simulated replications of the experiment.

Behavior in free recall can be described in terms of three
stages: initiation, transitions, and termination (Kahana,
2012). We measured recall initiation by calculating the
probability of first recalling an item as a function of the
serial position in which it was presented in the list. After

the first recall, transitions between recalled items exhibit
two major forms of organization: temporal clustering and
semantic clustering.

Temporal clustering is the tendency of participants to
successively recall items that were presented adjacent
to one another in the list (Kahana, 1996). We used a
lag-based conditional response probability (lag-CRP;
Kahana, 1996) analysis to characterize temporal cluster-
ing (where lag indicates the difference between the
position of two items in the study list). The lag-CRP
analysis provides the probability of making recall transi-
tions of a particular lag, conditional on that lag being
available for recall (an item was considered unavailable
if there was no item presented at that serial position, or
if that item had already been recalled previously). The
first three output positions were excluded from this
analysis. In this analysis and the other transition-based
analyses described below, when analyzing the observed
data, transitions to or from intrusions or repeats of
already-recalled words were excluded.

We measured semantic clustering using a related mea-
sure, the semantic-CRP (Howard & Kahana, 2002b;
Sederberg et al., 2010). Rather than partitioning recall
transitions on the basis of lag, this analysis partitions
transitions on the basis of the semantic identities of the
items themselves. First, we tallied the number of times
each participant made a transition from item i to item j,
for each item in the stimulus pool. We also tallied a sepa-
rate count of the number of times that each participant
could have made each possible transition between words,
given the words that were still available at each point in
recall. A given transition between items i and j was not
counted as possible if item i was never recalled. We then
determined a set of semantic similarity bins that we used
to group together inter-item transitions (details on how
the bins were determined are specified below). Within
each bin, we calculated the number of actual transitions
in that bin, and divided by the number of possible transitions.

In a set of preliminary analyses, we contrasted a ver-
sion of the semantic-CRP analysis described by Howard
and Kahana (2002b) with a slightly different version
described by Sederberg et al. (2010). We found that the
semantic-CRPs for the Base model, which had no semantic
associations and therefore could not produce semantic
organization, showed an increased probability of very
low- or high-similarity transitions when the semantic-
CRPs were calculated as described by Howard and
Kahana (2002b). This led us to implement a version of
the analysis more similar to that described by Sederberg
et al. (2010), which did not demonstrate this distortion.

Prior implementations of the semantic-CRP analysis
have generally used bins that contain deciles (Healey &
Kahana, 2014) or percentiles (Howard & Kahana, 2002b;
Howard et al., 2007). However, because semantic similarity
values based on WAS and LSA are highly positively skewed
(Manning & Kahana, 2012), this results in many bins at low
similarity values, and very few bins at higher similarity
values. To better estimate CRPs for the full range of similar-
ity values, we took a different strategy of determining bin
sizes so that we obtain a minimal sample size at each bin
(see Sederberg et al., 2010) for another example of unequal
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bin sizes used for this analysis). First, we obtained the
semantic similarities for each inter-item transition that
was possible at least once over all recall sequences in the
study, based on the semantic similarity measure of interest
(LSA, GloVe, or WAS). Starting from the highest similarity
value, we decreased the lower limit of the bin by
increments of 0.05 until there were at least 10 possible
transitions per subject on average. After defining a bin,
the lower limit of that bin became the upper limit of the
next bin, and the process was repeated. The center of each
bin was defined as the mean similarity value over all
possible transitions within that bin. We determined the
bins from the actual data, then applied these bins to the
simulated data from our model variants.

In order to examine the specific predictions of the
context-based semantic cuing mechanism, we developed
a novel measure to determine whether the context in
which a word appears in the recall sequence predicts
subsequent semantic organization. We used the semantic
score metric introduced by Polyn et al. (2009) to character-
ize the percentile of semantic relatedness of each
transition during recall. For each transition between
recalled words, first the items that are still available for
recall (i.e. that have not been recalled previously) are
determined. These available words are ranked on their
semantic similarity to the just-recalled item. The per-
centile of the transition the participant actually made is
noted, and this percentile is averaged over all transitions
to obtain a semantic score that reflects the overall amount
of semantic organization. We calculated semantic score by
ranking available items based on similarity to items of
recall lag n, where n is the number of output positions
separating the previously recalled item at output position
i—n from the next item i in the recall sequence. When
n =1, the two recall events are adjacent; this corresponds
to a standard semantic score as described by Polyn et al.
(2009). For example, say a participant studied the list dog
king cat tree queen, then recalled “tree”, “cat”, “queen”,
“dog”. After the participant recalled “queen”, there were
two possible words that could have been recalled next:
dog and king. For recall lag 1, these items would be ranked
based on their similarity to the just-recalled item queen, so
that king would be ranked highest and the semantic score
for that transition would be 0 (since the participant next
recalled dog instead). In contrast, for recall lag 2, the
remaining items would be ranked based on their similarity
to cat, so that dog would be ranked highest and the
semantic score for that transition would be 1.

For each participant, we calculated the semantic score
for each recall lag from 1 to 4, averaging over all valid tran-
sitions. For a given recall lag, a transition was excluded
from the analysis if either item i or item i — n was a repeat
or an intrusion. The first three recalled items were
excluded from the analysis so that the same output
positions would be included for recall lags 1-4. Semantic
score is expected to be 0.5 by chance, indicating recall
without regard to semantic similarity. If semantic score is
greater than 0.5 for n > 0, we take this as evidence that
semantic cuing is influenced by prior items in the recall
sequences, consistent with context-based semantic cuing.

We calculated the probability of recall termination as a
function of output position. We excluded repeats and
intrusions when calculating output position so that the
probability of stopping at output position list length +1 is
unity. Finally, we calculated the serial position curve,
which shows the probability of recalling each item as a
function of its serial position in the list.

For each measure of recall behavior, we calculated con-
fidence intervals using a bootstrap procedure. For each of
5000 samples, we sampled subject means with replace-
ment and calculated a simulated group mean. We set the
confidence interval to include the middle 95% of the simu-
lated group means.

Formal description of the CMR model

Here, we give a formal description of the equations that
define CMR’s structure and behavior. Table 1 provides an
overview of the parameters that control the behavior of
the model.

CMR takes the form of a simplified neural network with
two interacting representations, a feature-based represen-
tation of the studied item (the item layer, F) and a contex-
tual representation (the context layer, C). The two layers
communicate with one another through two sets of asso-
ciative connections represented by matrices M and M.
Each of these weight matrices contains both pre-
experimental associations and new associations learned
during the experiment. Pre-experimental weights are

designated M, and M ; the experimental weights are

pre pre’
FC CF
M,,, and M,,..
In the present simulations, we are particularly inter-

ested in the structure of the pre-experimental weights.

Table 1
List of model parameters, with a brief description of each.

Parameter Parameter Description
type
Context Penc Rate of context drift during encoding
updating  fgelay Rate of context drift during end-of-list
distraction
Bstart Amount of start-list context retrieved
at start of recall
Brec Rate of context drift during recall
Associative o Initial strength of context-to-item
structure connections
5 Initial strength of the diagonal of M
s Scaling of semantic association
strengths
Y Amount of experimental context
retrieved by a recalled item
b Scaling of primacy gradient in learning
rate on M
bq Rate of decay of primacy gradient
Recall T Sensitivity parameter of the Luce
dynamics choice rule
05 Scaling of the stop probability over
output position
0, Rate of increase in stop probability

over output position
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For all model variants, we set the pre-experimental item-
to-context associations according to

19, ifi=j
FC ’
M {0, if i), )

This connects each unit on F to the corresponding unit
on C. The y parameter controls the strength of these
pre-experimental associations relative to the experimental
associations described below.

For the base model, which does not contain any
semantic associations, we set the pre-experimental
context-to-item associations according to

5, ifi=j
CF )
M) = { o, ifi#j. ®)

Here, the oo parameter allows all the items to support
one another in the recall competition in a uniform manner.
Our ¢ parameter is similar to the y& parameter described
by Sederberg et al. (2008). Our implementation is different
from theirs in that « is free to be non-zero, and some model
variants also include the addition of semantic similarity
strengths. In a set of preliminary simulations, we tested a
form of the model where M/, was set to 0. Through a
series of model comparison analyses (not reported here),
we found that freeing both the 6 and o parameters
substantially improved the fit, based on AIC.

For the set of model variants which used context-based
semantic cuing, the context-to-item associations were set
according to

B ifi=j
CF ’
Mpre l_] { o -‘rSM?jm, lf l 7&], (9)

where M;;™ gives the semantic similarity between items i
and j according to WAS, GloVe, or LSA, and s is a scaling
parameter (cf. Polyn et al., 2009). In other words, we used
a linear transform to map semantic cosine similarity values
based on WAS, GloVe, or LSA to semantic strengths in the
model, where o serves as an intercept parameter and s is
a slope parameter. The diagonal of M**™ is set to 0, so that
self-strengths are solely determined by the § parameter.
At the start of the list, context is initialized with a state
that is orthogonal to the pre-experimental context associ-
ated with the set of items. Similarly, item representations
are assumed to be orthonormal to each other; each unit
of F corresponds to one item. When an item i is presented
during the study period, its representation on F, f;, is
activated. Pre-experimental context ¢! is retrieved and is
input to the context layer to update the current state of
context. The input to context is
cN = Mf; = MECf, (10)

pre

since My, is assumed to be zero at the start of the list. The
retrieved pre-experimental context N is then normalized
to have length 1.

After retrieval of pre-experimental context c!N, the cur-

rent state of context is updated according to

¢ = piciq + N, (11)

where f is set to fi,, a free parameter of the model, and p;
is set so that the length of ¢; is 1, according to

= 14+ Bl e = 1] = Bleiy - cY). (12)
After context is updated, the current item f; and the
current state of context ¢; become associated through
simple Hebbian learning. After each item presentation,
the experimental associations are updated according to
AME = e f). (13)

exp

When an item is presented, the network also learns
associations from the current state of context to the
current item, according to

CF

Mexp - d)lf C (14)
where ¢; scales the amount of learning, simulating the
increased attention to initial items in a list that has been
proposed to explain the primacy effect (Sederberg et al.,
2008). ¢; depends on the serial position i of the studied
item:

¢ = petali-D 4 1. (15)

The free parameters ¢, and ¢, control the magnitude
and decay of this learning-rate gradient, respectively.

To simulate the end-of-list distraction in Experiment 2,
we assumed that distraction during the retention interval
causes a change in context (Sederberg et al., 2008). Context
is updated according to Eq. (12), where 8 is set to f,, and
cN is a vector that is orthogonal to the pre-experimental
contexts of the studied items.

Before initiating recall, we assume that some amount of
the pre-list context is reinstated. We assume that context
is updated according to

Cstart = PNH CN + ﬂstartc07 (16)

where ¢y, is the state of context at the start of free recall,
N is the number of items in the list, ¢, is the state of
context at the start of the list before any items have been
presented, and p,_, is calculated according to Eq. (12). This
mechanism is consistent with evidence that participants
sometimes recall the start of the list and use that event
as a cue (Laming, 1999). In preliminary simulations we
found that models including this start-list context rein-
statement demonstrated a better fit to the primacy effect
than models containing the learning-rate gradient alone
(see also Kragel et al., 2015).

At each recall attempt, the current state of context is
used as a retrieval cue to attempt retrieval of a studied
item. First, the activation of each item a is determined
according to

a=M%c. 17
(7)

In order to avoid the possibility of the model assigning a
probability of O to any possible recall, we set a minimal
activation for each item of 1077,

At each recall attempt, we calculated the probability of
stopping recall (in which case no item was recalled, and
search terminated). Probability of stopping recall varies
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as a function of output position j (where j = 0 for the first
attempt), according to

P(stop. ) = 0se", (18)

where 0; and 0, are free parameters that determine the
scaling and rate of increase, respectively, of the exponen-
tial function. The stopping mechanism does not interact
with any model mechanism, and is simply intended to
capture the average probability of stopping as a function
of output position.

The probability P(i) of recalling a given item i is defined
conditional on recall not stopping at that position, and it
varies with activation strength, according to

. al
P(i) = (1 = P(stop)) —y— (19)

Zk alz
where 7 is a sensitivity parameter that determines the
contrast between well-supported and poorly supported
items. High values of t will cause a greater influence of
differences in support, while low values will cause
relatively uniform probabilities of recalling each item.

If an item is recalled, then that item is reactivated on F.
The reactivated item is then used to retrieve both experi-
mental and pre-experimental context, according to

N = M, (20)

Context is then updated using Eq. (11), and is used to
cue for another recall attempt. The process continues until
the model reaches the end of the recall sequence.

Item-based semantic cuing

We also examined an item-based semantic cuing model
that used separate context and item cues for episodic and
semantic associations. In this model, contextual cuing
worked as before, but semantic associations were not
included in M. Recall initiation was driven by projecting
context through episodic associations on M. For each
following recall attempt, the feature-layer vector corre-
sponding to the last recalled item, f;, was projected
through the scaled semantic similarity matrix (the diago-
nal, representing item self-strengths, was set to 0). The
item activations corresponding to contextual cuing and
item cuing were added to obtain the total item activation:

a =sM*"f, + M ¢ (21)

The activation values a were then used with Eq. (19) to
determine recall probabilities.

We also examined a model that combined context- and
item-based semantic cuing. This was the same as the
item-based semantic cuing model, but rather than cuing
semantics using just the item vector, we used a weighted
combination of context and item:

a=sM*"(if; + (1 — A)c) + M, (22)

where / is a parameter controlling the relative weighting of
the item cue compared to the context cue. Note that this
model is equivalent to the item-based semantic cuing
model when 4 = 1 and to the context-based semantic cuing
model when 1=0. Note also that each model variant,

regardless of the value of /, used a context cue to probe
the episodic associations stored in M.

Results

The modeling framework used here is designed to
account for the simultaneous influence of temporal and
semantic information on memory search in three
free-recall experiments which differed on a number of
methodological characteristics. We consider three models
of semantic relatedness (LSA, GloVE, and WAS) which pro-
vide similarity scores specifying the semantic associations
between the studied words. We also consider three models
of semantic cuing (item-based semantic cuing [I], context-
based semantic cuing [C], and hybrid semantic cuing [IC])
which specify how this semantic information is used
during memory search. The hybrid semantic cuing model
includes both forms of semantic cuing; a mixing parameter
J determines the relative strength of each cuing mecha-
nism. For each experiment, we construct a baseline model
without semantic structure and 9 models with semantic
structure (crossing the three models of semantic related-
ness with the three models of semantic cuing). Note that,
while these models varied in the specifics of semantic
organization, each of them used the same contextual cuing
mechanism to guide temporal organization. We compare
the set of 10 models in terms of their overall fit to the recall
sequences (i.e., the likelihood statistic; what is the proba-
bility that the observed data was generated by this
model?). Each model is also used to generate recall
sequences, which allows us to compare the models in
terms of their fit to a number of important summary
statistics which characterize recall performance, temporal
organization, and semantic organization.

Serial position effects and temporal organization

Table 2 reports the overall fitness of each of the 10
model variants in each experiment, in terms of AIC
weights. AIC weights indicate, for a given set of competing
models, the probability of each model generating the
observed data, under the assumption that one of them
did. It should be noted that while the base model had the
lowest AIC weight for both experiments (i.e., it had the
worst fit to the recall sequences), it still provided an excel-
lent fit to a number of important summary statistics,
including the recency, primacy, and contiguity effects.
The generative version of the Base model provided a good
qualitative fit of recall as a function of serial position
(Fig. 4a, e, and i), including the widely varying magnitudes
of the recency and primacy effects in the different experi-
ments. Primacy was slightly under-predicted in Experi-
ments 1 and 3, which was an issue with each model
variant examined in this study. Given that retrieved-
context models have successfully accounted for the magni-
tude of primacy in prior work (e.g. Polyn et al., 2009), it
appears that this under-prediction of primacy is caused
by our different emphasis on fitting entire recall sequences
rather than focusing on traditional summary statistics
such as the serial position curve (as in prior work with
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Table 2

AIC weights for models with semantic similarity. Models with wAIC > 0.1 are displayed in bold. Weights for the base model not shown (Experiment 1:
6.404e—48; Experiment 2: 1.93e—90; Experiment 3: 1.14e—89). LSA: latent semantic analysis; GloVe: global vectors model; WAS: word association spaces. C:
context-based semantic cuing; I: item-based semantic cuing; IC: combined item and context-based semantic cuing.

Experiment 1 Experiment 2 Experiment 3
C I IC C 1 IC C I IC
LSA 3.37e-40 2.22e-28 8.39e—42 1.95e-52 5.30e—-34 4.20e—44 0 0 0
GloVe 2.75e-21 2.78e—6 7.38e—-18 3.15e—-11 7.78e-9 241e-11 0 1.33e—-294 2.68e—314
WAS 6.72e-7 0.9999 6.16e—12 3.87e-6 0.9999 4.10e-7 3.90e-74 1 4.01e-8
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(b) Probability of starting recall with each serial position. (c) Conditional response probability as a function of lag. (d) Stop probability by output position.
(e-h) Same measures as above, for Experiment 2. (i-1) Experiment 3. Shaded areas indicate 95% confidence intervals for the observed data.

retrieved-context models). The model also provides a qual-
itative account of the probability of initiating recall at each
serial position (Fig. 4b, f, and j). The model accounts for the
temporal organization observed in the data, and it captures
the tendency for participants to make forward transitions
more often than backward transitions (Fig. 4c, g, and k).
Finally, the model accounts for the finding of a positively
accelerated increase in stop probability with output
position (Fig. 4d, h, and 1). The nine model variants with
semantic associations also accounted for each of these
summary statistics for each experiment, with fits that were
very similar to the Base model. RMSD for each model
variant, pooled over the non-semantic summary statistics,
is presented in Tables 3-5. RMSD was not significantly
different from the Base model for any of the models with
semantic associations (p > 0.05, Bonferroni corrected),

with one exception: In Experiment 3, the GloVe-C model
had a significantly higher RMSD across subjects compared
to the Base model (t(125)=3.34, p = 0.01, Bonferroni
corrected), due to a slightly worse fit of the lag-CRP. This
may reflect a compromise in the fit between temporal
and semantic organization (which are most strongly
related in the context-based semantic cuing models).

Model comparison

Given that our Base model with no semantic associa-
tions was able to account for benchmark phenomena in
free recall, we examined whether the predictive power of
the model could be improved by the addition of semantic
structure. The addition of associative structure based on
LSA, GloVe, or WAS led to a substantially better fit,
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regardless of the cuing mechanism used: For each
experiment, wAIC and wBIC for the set of semantic models
(aggregating over cuing mechanisms and semantic
models) was close to 1. For all experiments and semantic
models, AIC was lower (i.e., fithess was improved) when
an item-based, rather than context-based, semantic cuing
mechanism was used. Similarly, for a given semantic cuing
mechanism, WAS always provided the best fit, followed by
GloVe, then LSA. The WAS-I model provided the best fit
overall for all three experiments, with AIC weights
approaching 1. Critically, our measure of model fitness is
based on the likelihood of the recall sequences under that
model; it makes no assumptions about the actual structure
of our participants’ semantic knowledge, and therefore
avoids complications that arise when a semantic model is
used to both generate and evaluate model predictions
(Polyn et al., 2009; Manning, Sperling, Sharan, Rosenberg,
& Kahana, 2012). This analysis of AIC weights aggregates
over multiple participants, assuming that they all use
similar semantic cuing mechanisms. In the Semantic
organization section, we examine the possibility that
people may use different cues to probe semantic memory.

Exclusion of recall errors

In this study, we focus on the processes giving rise to
correct responses during free recall. While participants
make error responses in the form of repeats and intrusions,
they are relatively rare. Of the original set of recall
attempts in Experiment 1, 4.52% were repeats, 1.34% were
prior-list intrusions, and 3.73% were extra-list intrusions.
In Experiment 2, 3.30% of recall attempts were repeats,
3.14% were prior-list intrusions, and 2.39% were extra-list
intrusions. In Experiment 3, 2.97% of recall attempts were
repeats, 0.56% were prior-list intrusions, and 2.33% were
extra-list intrusions. The version of CMR used here was
not designed to simulate these error responses; as such,
we excluded repeats and intrusions by removing them
from the recall sequences and simulating recall as if they
had not occurred. A potential issue with this approach is
that by excising these error responses, we introduce a
discontinuity in the recall sequence, which might hurt a
model’s ability to predict a correct recall response follow-
ing an error response. This was indeed the case: Across
all model variants, log likelihood was, on average, lower
for the correct recall events following an excluded repeat
or intrusion, indicating that these events had lower predic-
tion accuracy (Experiment 1: following repeat or intrusion
—2.890; other recalls —2.378; Experiment 2: following
repeat or intrusion -2.463; other recalls -2.112;
Experiment 3: following repeat or intrusion —2.413; other
recalls —1.935).

In order to test whether these differences in log likeli-
hood following repeats and intrusions affected our model
comparison analysis, we calculated AIC weights with recall
events immediately following a repeat or intrusion
excluded. AIC weights for this restricted set of recall events
were comparable to when all recall events were included
(wAIC for WAS-I1 model, Experiment 1: 0.9958; Experiment
2: 0.9999; Experiment 3: 1.0000). Similar AIC weights
were also obtained when the two recall events following

a repeat or intrusion were excluded (wWAIC for WAS-I
model, Experiment 1: 0.9513; Experiment 2: 0.9996;
Experiment 3: 1.0000).

Semantic organization

In order to characterize how the model of semantic
associations (WAS, GloVe, or LSA) and the type of semantic
cuing mechanism (item, context, or item + context) influ-
enced the behavior of the models, we carried out a set of
semantic-CRP analyses (Fig. 5). The semantic-CRP shows
how the likelihood of two items being recalled in adjacent
output positions increases as a function of the semantic
similarity of the two items. We examined three versions
of the semantic-CRP, using each of the different semantic
similarity models.

Qualitatively, for each combination of model and
semantic-CRP analysis, the context-based semantic cuing
models predicted a more shallow slope for the semantic-
CRP than the item-based cuing models. This suggests that
an increase in the strength of semantic associations in
the context-based cuing models would have impaired the
ability of these models to account for other aspects of the
recall sequences. We examined whether these differences
in fit were significant, focusing on the WAS-based models,
which had the best predictive power overall. We calculated
RMSD, a measure of error in the model fit, for each model
and subject, and we examined whether RMSD was
significantly different between the item, context, and
item + context models for a given semantic model. There
were no significant differences between any pair of models
in Experiments 1 or 2, but in Experiment 3 RMSD was
significantly greater for the WAS-C model when compared
to the WAS-I model (t(125) = 3.58, p = 0.00049) and the
WAS-IC model (t(125)=4.61, p=9.9e —6), suggesting
that adding an item-based semantic cuing mechanism to
the standard CMR model allowed a better fit to the data.

Testing for persistence of semantic influence

While the item-based and context-based semantic
cuing models make similar predictions for the strength of
temporal organization, they make a divergent prediction
regarding how long semantic information should exert an
influence during the recall period. The item-based model
suggests that the semantic organizational influence of a
given recalled item should be short-lived, only directly
affecting the immediately following recall event. In con-
trast, the context-based model suggests that this influence
is longer lived, given that the contextual information asso-
ciated with that remembered item fades gradually. We
designed a novel analysis of semantic organization to dis-
tinguish between these two accounts; this analysis is
described in detail in the methods section (Analysis of recall
behavior). While the semantic CRP analysis focuses on
adjacent items in the recall sequence, this analysis exami-
nes whether more distant items in the recall sequence can
exert a semantic influence on one another. Polyn et al.
(2009) presented a semantic organization score that
focused on the relatedness of items in adjacent output
positions (i.e., recall events with a lag of 1). Here, we



N.W. Morton, S.M. Polyn/Journal of Memory and Language 86 (2016) 119-140 133

az o2 b 2z 022 C Z 022

3 —Data 3 —Data 3 —Data

s o LSA-C 8 o GloVe-C K o WAS-C

2 0.18 | o | 5A-I 2 018 | o GloVe-I 2

° A LSA-IC ° A GloVe-IC| °

g 0.14 2 014 @

o [<] [~}

Qo o o

3 3 N 3

g o1 N g o1 é g

g B 88 ©° g <

S 0.06 S 0.06 S

3 3 3

c c c

8 0.02 S 0.02 8 0.02

01 0 01 02 03 04 05 06 202 -01 0 01 02 03 04 05 0 01 02 03 04 05
LSA Similarity GloVe Similarity WAS Similarity

d 2z oss e Z o035 fZoss

i —Data 3 —Data '._aﬂ —Data

% 0.3 | © LSA-C § 0.3 | © Glove-C £ 03° WAS-C n

2 o LSA-I 2 o GloVe-1 2

g 0.25 LA LSA-IC| g 0.25 f{ A GloVe-IC| o 0.25

& & 8

2 02 2 02 2 02

& O o &

< 015 £ o = 015 5 < 015

5 8o 5 g

= 0.1 = 0.1 £ 041

£ H g

0 005 =01 02 03 04 05 06 © °®gi 0 01 02 03 02 05 S 005 =31 02 0.3 0.4 05 06 07 08

LSA Similarity GloVe Similarity WAS Similarity

g £ os h Z s i £ o6

S —Data 3 —Data 3 —Data

8 o5 oLsa-c 8 o5l © Glove-c 8 o5l o wAs-Cc

E o LSA-I 2 o GloVe-I 2

o 0.4 [ A LSA-IC o 0.4 L& GloVe-IC o 0.4

(7] (7] n 7]

8 8 s &

S 0.3 ° 2 0.3 o 2 0.3

7] 7] 7]

& & @

- 0.2 8 — 0.2 — 02

© © ©

5 ° § 5

= 041 = 0.1 = 0.1

T T k-]

c c c

S o 8 o S o0

o -01 0 01 02 03 04 05 0.6 -02-01 0 0.4 02 03 04 05 06 © 0 02 04 06 08 1

LSA Similarity

GloVe Similarity

WAS Similarity

Fig. 5. Measures of semantic organization, for the observed data and for model simulations. Top row: Experiment 1; middle row: Experiment 2; bottom
row: Experiment 3. (a) Conditional response probability as a function of latent semantic analysis (LSA) semantic similarity bin. The line indicates the mean
value in the data, and the shaded region represents the 95% confidence interval. Also shown is the performance of the LSA-based models. C: context-based
semantic cuing; I: item-based semantic cuing; IC: combined item and context-based semantic cuing. (b) Conditional response probability as a function of
global vectors (GloVe) semantic similarity bin. (c) Conditional response probability as a function of word association spaces (WAS) semantic similarity bin.
(d-f) Conditional response probability by semantic similarity bin for Experiment 2. (g-i) Experiment 3.

extend that analysis to quantify the influence of a recalled
item on more distant recall events (i.e., recall events of lag
2-4). The context-based semantic cuing mechanism
predicts that the semantic organization score should
decrease as a function of recall lag, but should be greater
than chance (0.5) for recall lags greater than 1.

As shown in Fig. 6, the best-fitting WAS-C models
predicted an above-chance WAS score for recall lag 2 in
each experiment. In contrast to this prediction, we found
that WAS factor for the observed data was not significantly
greater than 0.5 at any recall lag greater than 1 (Fig. 6;
p > 0.05 for recall lags 2-4 in each experiment). Critically,
we found that the predictions of the WAS-I model for
semantic organization score as a function of recall lag were
significantly more accurate than the WAS-C model. The
RMSD for the WAS-C model was significantly greater
across subjects than the WAS-I model in Experiment 2
(WAS-C RMSD: 0.0466, SEM 0.0037; WAS-I RMSD:
0.0453, SEM 0.0036; t(47)=2.15, p=0.037) and
Experiment 3 (WAS-C RMSD: 0.0421, SEM 0.0017; WAS-I
RMSD: 0.0395, SEM 0.0016; t(125) =4.41, p = 0.00002).

A similar but non-significant trend was observed in Exper-
iment 1 (WAS-C RMSD: 0.0307, SEM 0.0028; WAS-I RMSD:
0.0304, SEM 0.0027; p > 0.05).

Interestingly, the observed semantic organization score
for recall lags 3 and 4 was significantly below the chance
level of 0.5 in Experiment 3 (lag 3: t(125)=2.61,
p=0.011; lag 4: t(125) =3.58, p = 0.0005). In contrast,
none of the models dropped below 0.5 at any recall lag.
Therefore, this effect in the observed data is unlikely to
be a product of some bias in the analysis, and instead
might reflect a mechanism not implemented in the model.
One possibility is that participants sometimes strategically
shift between targeting different clusters of semantically
related items; if this were the case, then after a transition
to a new cluster of related items, items from earlier clus-
ters would be less likely to be recalled, resulting in a
below-chance distance factor to those items. Evidence for
strategic targeting of groups of related items has
previously been observed in free recall of items from
categorized lists (Pollio, Richards, & Lucas, 1969). Although
the context-based semantic cuing model predicts that
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semantic cues will persist over time, it predicts that this
change will be gradual, while in practice participants
may sometimes exhibit sharper changes (e.g. shifting from
targeting words related to animals to targeting words
related to musical instruments).

Individual differences in semantic cuing

In terms of the AIC weights, which aggregate across
participants, there is overwhelming support for the item-
based semantic cuing model in each of the three experi-
ments (Table 2). However, the modeling framework was
designed to find the optimal parameter settings for each
individual in each experiment, which allows us to examine
whether there were individual differences in cuing strat-
egy across participants. Given that WAS provided the best
overall description of behavior relative to the other models
of semantic associations (and regardless of the type of
cuing used), we focus our examination on the hybrid
WAS-IC model. This model contains the free parameter £,
which specifies for each participant the relative weighting
of item-based and context-based semantic cuing (where
4 =0 indicates pure context-based semantic cuing, and
A=1 indicates pure item-based semantic cuing).
Regardless of the value of 4, all models used context-
based episodic cuing to guide temporal organization.

Fig. 7 presents a histogram for each experiment with
the best-fitting values of 1 for each participant. In each

experiment, we find that the modal value of 4 is 1, indicat-
ing that the majority of participants in each experiment
were best fit by a pure item-based semantic cuing model.
However, we also find that in each experiment there are
a subset of participants whose behavior is better described
by a model with /<1, indicating some evidence for
context-based semantic cuing. This pattern is most striking
in Experiment 2, where 16 participants were best fit by a
pure context-based semantic cuing model. This result
suggests that while there are many similarities in recall
performance across participants (Healey & Kahana, 2014),
there are differences in how semantic structure affects
recall organization across different participants. The
difference in the distribution of / across participants may
be related to procedural differences in the experimental
paradigms. For example, the faster presentation time or
the type of encoding task (visualization) in Experiment 2
may have encouraged a different type of encoding that
led to semantic information being integrated into temporal
context for a subset of participants, yielding behavior
consistent with the context-based cuing model. This point
receives more attention in the discussion.

Discussion

We developed a likelihood-based modeling framework
where a model of semantic associations is embedded in
the context maintenance and retrieval model (CMR); this
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Fig. 7. Value of the /. parameter for the best-fitting WAS model with combined item and context-based semantic cuing, for each experiment. (a) In
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cuing mechanism. (b) In Experiment 2, a substantial subset of participants had values of / that were near to 0, consistent with the context-based semantic
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framework allowed us to assess the relative validity of
competing models of semantic organization in free recall
while accounting for many of the complexities of memory
search. CMR proposes that studied items become associ-
ated with a representation of temporal context, which pro-
vides an important cue during memory search. This
context-based episodic cuing mechanism has been shown
to explain several important aspects of temporal organiza-
tion in free recall (Howard & Kahana, 2002a; Howard, Jing,
Rao, Provyn, & Datey, 2009; Sederberg et al., 2008);
however, it is less clear whether temporal context also
influences semantic organization. We contrasted two
mechanisms by which semantic associations have been
proposed to influence free recall: an item-based mecha-
nism where retrieved items cue for semantic associates,
and a context-based mechanism where retrieved context
serves as a semantic cue. While temporal organization in
free recall is consistent with a context-based cuing
mechanism (Howard & Kahana, 2002a; Lohnas & Kahana,
2014), we found that semantic organization in free recall
is more consistent with an item-based semantic cuing
mechanism, suggesting that semantic and episodic associ-
ations are probed using distinct cues during memory
search. Furthermore, we found that models using word-
association spaces (WAS) to determine semantic structure
outperformed models using latent semantic analysis (LSA)
or global vectors (GloVe), in terms of the models’ ability to
predict the identities of a sequence of recalled items. We
propose that our modeling framework provides specific
advantages in the evaluation of computational models of
semantic and episodic memory and may provide the
basis for developing better measurements of semantic
organization in recall sequences.

Models of semantic association strength

Both WAS and LSA have been used to characterize
behavior in free recall (Howard & Kahana, 2002b;
Howard et al., 2007; Manning & Kahana, 2012) and have
been used as components of models of memory search
(Sirotin et al., 2005; Polyn et al., 2009). The present results
suggest that WAS is better able than both LSA and a more
recently developed technique, GloVe, to predict behavior in
recall of lists of words with no obvious semantic structure.
Our results complement those of Sirotin et al. (2005), who
compared the ability of WAS and LSA to explain behavior
in free recall of categorized materials. They developed a
version of the search of associative memory (SAM) model
(Raaijmakers & Shiffrin, 1980) that included semantic asso-
ciations between items. Sirotin et al. (2005) assumed that
search of long-term memory is driven by both episodic
and semantic inter-item associations. They compared a
model with semantic structure based on WAS to a model
with semantic structure based on LSA and found that the
WAS-based model was better able to account for category
clustering in a multi-trial free recall study (Kahana &
Wingfield, 2000). Their analysis of recall behavior focused
on only one aspect of semantic organization, namely clus-
tering by taxonomic category. In contrast, our likelihood-
based framework does not require choosing a particular
summary statistic to evaluate the fitness of a model. As

such, this framework can be applied to experiments where
the studied items do not have a systematic category struc-
ture. Furthermore, the framework is flexible enough that it
can be used to evaluate any model of semantic structure, as
long as that model provides estimates of the associative
strengths between items. While the vector-space models
(WAS, GloVe, and LSA) evaluated here contain symmetric
associative strengths, this characteristic is not neces-
sary—the framework can evaluate semantic models in
which the associative strength from item i to item j is
not the same as the associative strength of item j to item i.

We are interested in determining which model contains
semantic relatedness scores that best correspond to those
in the human memory system. In terms of predictive
power and fit to summary statistics, WAS is the clear
winner in this regard. However, the conclusions we can
draw regarding the processes giving rise to these semantic
structures are limited. The superior performance of the
WAS model is not surprising in that its representations
are constructed from the results of a behavioral free-
association experiment, while LSA and GloVe are trained
on large text corpora. In other words, WAS incorporates
behavioral results from a similar cognitive task into its
structure (i.e., free association vs. free recall), sidestepping
the need to describe the processes by which this structure
develops (Jones, Hills, & Todd, 2015).

Nonetheless, by contrasting WAS with the other models
of semantic association, we may gain insight into how
these other models can be modified to increase their utility
as cognitive models of semantic similarity. In our examina-
tion of the semantic CRP (Fig. 5), only the WAS-CRP
showed a linear relationship between semantic similarity
and likelihood of semantic clustering in the observed data.
In contrast, the LSA-CRP and GloVe-CRP showed positively
accelerated curves describing this relationship. One inter-
pretation of this difference is that WAS does a better job
estimating the global structure of the semantic space
containing these word representations. All three models
seem to do a good job describing the local structure of
semantic space in that all three semantic-CRP curves
capture the increased likelihood of clustering associated
with highly related word pairs (i.e., words that are nearby
in semantic space). However, only WAS seems to capture
the behavioral consequences of small changes in semantic
relatedness for less related word pairs (i.e., words that are
more distant in semantic space). This interpretation is sup-
ported by our modeling results, in which only the WAS
models are able to fit the full extent of the semantic-CRP,
consistent with the idea that WAS provides a good match
to the associations guiding recall. By this logic, the failure
of the LSA and GloVe models to fit their corresponding
semantic-CRP curves is likely due to the presence of
semantic associations that do not match the ones guiding
behavior. If the strengths of these semantic associations
were increased, it would be at the cost of predicting
semantic clustering that mismatches the observed data.

In future work, it may be possible to identify transfor-
mations on the LSA or GloVe representations that improve
their predictive power in free recall. This would be of util-
ity to many cognitive researchers interested in estimating
semantic similarity, as the semantic similarity estimates
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in WAS are limited to the 5018 words that were part of
the original free-association study (Nelson et al., 2004).
Such an endeavor might also inform the development of
process-based models attempting to describe the emer-
gence of semantic structure with experience (Jones &
Mewhort, 2007; Rao & Howard, 2008; Rogers &
McClelland, 2004).

Mechanisms of semantic cuing

Polyn et al. (2009) developed CMR, which extended the
temporal context model (TCM) to account for multiple
influences on recall organization, including source context
and semantic similarity. CMR is a retrieved-context model,
wherein retrieval of a particular item causes the system to
reactivate the temporal context representation associated
with that item. This retrieved context contains a weighted
average of information related to the items preceding the
just-recalled item in the study list. The version of CMR
presented by Polyn et al. (2009) used a context-based
semantic cuing mechanism in which retrieved temporal
context projects through a set of semantic associations,
providing support for any items that are semantically
related to any of the items represented in the context
cue. We constructed an alternative model in which
semantic cuing was driven by semantic associations
attached to a feature-based representation of the studied
item. This item-based semantic cuing mechanism is similar
to the semantic cuing mechanism in the eSAM model
(Sirotin et al.,, 2005), in which only the most recently
recalled studied item is used to cue its semantic associates.
In both variants of the model, recall organization is
simultaneously determined by temporal and semantic
information, but the nature of temporal/semantic interac-
tions differs between the two versions.

Across three experiments with widely varying method-
ological characteristics, we found that the context-based
semantic cuing mechanism described by Polyn et al.
(2009) was inferior to the item-based semantic cuing
mechanism. While the context-based semantic cuing
mechanism performed substantially better than a model
without any semantic structure, models with an item-
based semantic cuing mechanism were overall best at
predicting behavior. Under this item-based mechanism,
although temporal context is still used as an episodic
cue, only the most recently recalled item is used as a
semantic cue. We developed a novel analysis of semantic
organization to examine a divergent prediction of the
two models: While context-based semantic cuing predicts
that an item will have a gradually fading influence on
semantic organization, the item-based mechanism
predicts that the semantic influence of a given item will
be limited to the immediately following response. As
shown in the results of the recall-lag analysis presented
in Fig. 6, the predictions of the item-based model provided
a better fit to the observed data.

An examination of individual differences in recall
behavior revealed limited evidence for the engagement of
a context-based cuing mechanism in some subjects. This
evidence was most obvious in Experiment 2, where a sub-
stantial minority of the participants were best described by

the context-based semantic cuing mechanism. It is
possible that methodological differences between the
experiments underlie this observation. Experiment 2 had
a faster presentation time than Experiments 1 and 3, and
it included an end-of-list distraction period. Participants
in Experiment 2 were encouraged to visualize the items,
whereas in Experiment 1 they performed one of two binary
classification tasks. In Experiment 3, we examined trials
without an explicit encoding task, but these were
surrounded by trials in which participants performed the
same binary classification tasks as in Experiment 1, which
may have influenced their encoding strategy. More work is
needed to investigate what circumstances determine
whether recall behavior is more consistent with item- or
context-based semantic cuing.

One methodological characteristic common to the three
experiments was that there was no obvious semantic
structure to the study lists. Words were randomly chosen
from a large pool. It may be that context-based semantic
cuing is more likely to be engaged when study lists have
explicit semantic structure, as in blocked categorized free
recall paradigms (e.g. Puff, 1966). Recent scalp EEG evi-
dence is consistent with this idea. Using scalp EEG during
encoding of categorized materials, Morton et al. (2013)
found evidence of persistent category-specific activity
which became stronger when multiple items from the
same category were presented in sequence. The rate at
which this category-specific signal increased predicted
individual differences in organization by stimulus category
during recall. Morton et al. (2013) proposed that this inte-
grative category-specific signal is consistent with the oper-
ation of a temporal context mechanism. If each studied
item caused category-specific information to be integrated
into context, this would explain both why the category-
specific signal gets progressively stronger, and why this
rate of increase is related to individual differences in cate-
gory clustering. To test this account, Morton and Polyn
(unpublished results) created a modified version of CMR
in which each item is associated with a distributed pre-
experimental contextual representation containing seman-
tic information. As in the context-based semantic cuing
models examined in the present work, their distributed-
CMR model assumed that both temporal and semantic
organization are driven by contextual cues. They simulated
the Morton et al. (2013) experiment and found that the
distributed-CMR model correctly accounts for the relation-
ship between category-specific neural activity during
encoding and individual differences in semantic organiza-
tion. In future work, we plan to adapt the distributed-
CMR model to work within the likelihood-based frame-
work presented in this article. This will allow us to directly
contrast the semantic cuing models evaluated here, in
which semantic associations only have an influence during
retrieval, with the distributed-CMR model, where semantic
information is integrated into context during encoding.

One clear prediction of the context-based semantic
cuing mechanism is that a weighted combination of the
prior recalls determines the semantic influences for the
current recall event, causing a form of compound cuing.
Temporal organization shows clear compound cuing
effects in a way that is consistent with the CMR model
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(Lohnas & Kahana, 2014). While we observed temporal
organization effects similar to those in previous studies
(Fig. 4), we found no evidence for compound semantic
cuing (Fig. 6). However, it is possible that other types of
free-recall paradigms may show evidence for compound
semantic cuing. Kimball et al. (2007) examined behavior
in the false memory paradigm, in which participants have
a strong tendency to falsely recall critical items that are
semantically related to the items from the study list
(Deese, 1959; Roediger & McDermott, 1995). They
proposed a modified version of the SAM model in which
a compound cuing mechanism (in which multiple remem-
bered items exerted semantic influences during recall) was
necessary to fully account for data in false memory
experiments. It may be that the strong semantic structure
of study lists in the false memory paradigm leads to
the engagement of a context-based cuing mechanism.
However, more work is needed to determine whether the
CMR model can account for the major empirical phenom-
ena from false memory paradigms.

Measurement of semantic organization

In the current work, the influence of semantic informa-
tion is reflected in the magnitude of the s parameter, which
scales the influence of semantic associations on memory
search. Because the model contains other parameters
which account for behavioral variance due to temporal
structure, the best-fitting value of the s parameter may
provide a good estimate of the magnitude of semantic
organization in a given experiment. As such, the computa-
tional modeling framework used here may be useful for
measuring semantic organization while accounting for
other influences on recall behavior. Properly accounting
for temporal organization is critical when considering
experimental manipulations that alter the temporal orga-
nization of semantically related stimuli, as in experiments
that contrast study lists with blocked vs. random
presentation of categorized stimuli (Puff, 1966). However,
most of the prior work on blocked-random effects has
not accounted for this influence (e.g. Borges & Mandler,
1972; Cofer, Bruce, & Reicher, 1966; D’Agostino, 1969).
Through bootstrapping techniques, it is possible to esti-
mate the amount of semantic organization due to temporal
clustering (Morton et al., 2013). However, this technique
requires collecting data from baseline lists with no cate-
gory structure and involves the assumption that other
aspects of recall behavior are unaffected by the manipula-
tion of the temporal structure of the categorized materials.
To avoid these issues, CMR could be fit separately to
blocked and random lists. The semantic scaling parameter
would then provide an estimate of the strength of semantic
organization, while the other parameters (as well as the
structure of the model itself) could account for alterations
in temporal organization and other influences that might
vary between conditions. While further work is necessary
to determine whether CMR will provide reliable estimates
of semantic organization in these experiments, the current
work establishes the plausibility of such an approach,

which may prove useful for investigating interactions
between temporal and semantic structure during memory
search.

Conclusions

While prior research has found that semantic knowl-
edge exerts an important influence on the search of episo-
dic memory, many questions remain about the cognitive
mechanisms that mediate this influence. We developed a
modeling framework that allows one to both evaluate the
relative utility of different models of semantic associations
and to compare different mechanisms by which semantic
information affects memory search. In order to be able to
calculate the exact likelihood of recall sequences under a
given model, we used a simplified version of CMR which
did not contain mechanisms to determine response
latency, to produce recall errors, or to produce organiza-
tional effects related to source characteristics (Lohnas
et al,, 2015; Polyn et al., 2009). However, we believe it will
be possible to develop this framework to incorporate these
mechanisms, allowing one to examine different models of
how semantic information influences inter-response times,
recall errors, and other organizational effects. More gener-
ally, we hope that the computational modeling framework
presented here will continue to help shed light on how
prior semantic knowledge shapes the formation and
utilization of episodic memories.
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Appendix A

Maximum-likelihood parameter estimates, as well as
log likelihood, AIC, BIC, AIC weights, BIC weights, and
RMSD are shown in Tables 3-5. Although all parameters
were allowed to vary freely for each of the model variants,
many of the best-fitting parameters were quite similar
across all models. Parameters controlling the rate of con-
text evolution (Benc; Bgelay» aNd Prec), Parameters involved
in the primacy effect (¢, ¢4, and By.), and stopping
parameters (6; and 6,) were all comparable across the 10
model variants within each experiment. The semantic scal-
ing parameter, s, was generally greater for better-fitting
models, suggesting that the influence of semantics is
increased when the model of semantic cuing is
improved. For a given semantic model, o was increased for



Table 3

Best-fitting parameters for Experiment 1. Reported values indicate averages over subjects; values in parentheses indicate standard error of the mean. RMSD is reported for the summary statistics shown in Fig. 4. LSA:

latent semantic analysis; GloVe: global vectors; WAS: word association spaces. C: context-based semantic cuing; I: item-based semantic cuing; IC: combined item and context-based semantic cuing.

Base LSA-C LSA-1 LSA-IC GloVe-C GloVe-I GloVe-IC WAS-C WAS-I WAS-IC
Benc 0.72 (0.02) 0.72 (0.02) 0.71 (0.02) 0.72 (0.02) 0.71 (0.02) 0.69 (0.02) 0.70 (0.02) 0.72 (0.02) 0.70 (0.02) 0.71 (0.02)
Brec 0.87 (0.02) 0.88 (0.02) 0.86 (0.02) 0.87 (0.01) 0.89 (0.01) 0.84 (0.02) 0.85 (0.02) 0.89 (0.01) 0.86 (0.02) 0.87 (0.02)
Bstart 0.18 (0.04) 0.19 (0.04) 0.18 (0.04) 0.18 (0.04) 0.20 (0.04) 0.22 (0.05) 0.22 (0.05) 0.19 (0.04) 0.19 (0.04) 0.19 (0.04)
o 7.69 (2.66) 6.57 (2.58) 9.09 (2.75) 8.16 (2.68) 6.34 (2.41) 10.33 (2.72) 9.08 (2.70) 5.86 (2.37) 9.79 (2.96) 8.61 (2.90)
5 33.60 (5.96) 34.90 (6.34) 34.36 (6.05) 33.59 (6.05) 33.94 (6.25) 33.79 (5.93) 33.47 (5.98) 33.77 (6.27) 34.87 (6.31) 33.64 (6.32)
y 0.17 (0.04) 0.16 (0.03) 0.20 (0.04) 0.18 (0.04) 0.15 (0.03) 0.22 (0.04) 0.18 (0.04) 0.16 (0.03) 0.21 (0.04) 0.18 (0.03)
Pl - - - 0.84 (0.06) - - 0.91 (0.04) - - 0.83 (0.05)
s 30.84 (6.37) 29.82 (6.17) 27.85 (6.08) 27.81 (6.03) 27.82 (5.93) 20.33 (5.16) 22.67 (5.49) 30.53 (6.23) 27.35 (6.07) 27.06 (6.06)
g 14.48 (4.96) 13.34 (4.65) 15.06 (5.19) 14.39 (4.66) 13.51 (4.77) 13.61 (4.64) 16.76 (5.36) 16.12 (5.22) 16.00 (5.14) 15.13 (5.05)
s - 0.49 (0.12) 0.80 (0.20) 0.81 (0.19) 0.77 (0.20) 1.05 (0.19) 1.12 (0.22) 1.60 (0.31) 1.79 (0.35) 2.05 (0.42)
T 20.86 (5.11) 16.89 (4.60) 27.56 (5.90) 22.67 (5.33) 17.27 (4.35) 37.92 (6.51) 30.18 (6.15) 16.10 (4.16) 26.85 (5.70) 22.44 (5.08)
0 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
0r 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01) 0.32 (0.01)
In(L) —28664.34 —28600.32 —28573.11 —28558.88 —28556.78 —28522.23 —28503.75 —28523.65 —28509.44 —28490.12
AIC 58271.28 58232.82 58178.40 58240.21 58145.73 58076.63 58129.94 58079.47 58051.04 58102.67
BIC 59889.35 59994.10 59939.68 60144.01 59907.01 59837.91 60033.75 59840.75 59812.33 60006.48
WAIC 1.50493e—48 3.37118e-40 2.21533e-28 8.39428e-42 2.75331e-21 2.77987e—06 7.37794e—-18 6.72363e—07 0.999997 6.15624e—12
wBIC 1.88246e—-17 3.37118e—-40 2.21533e-28 9.44576e—-73 2.75331e-21 2.77987e—06 8.30211e-49 6.72363e—07 0.999997 6.92738e—-43
RMSD 0.1093 0.1082 0.1095 0.1097 0.1096 0.1088 0.1076 0.1086 0.1084 0.1086
Table 4

Best-fitting parameters for Experiment 2. Reported values indicate averages over subjects; values in parentheses indicate standard error of the mean. RMSD is reported for the summary statistics shown in Fig. 4. LSA:

latent semantic analysis; GloVe: global vectors model; WAS: word association spaces. C: context-based semantic cuing; I: item-based semantic cuing; IC: combined item and context-based semantic cuing.

Base LSA-C LSA-I LSA-IC GloVe-C GloVe-1 GloVe-IC WAS-C WAS-1 WAS-IC
Benc 0.76 (0.04) 0.70 (0.04) 0.64 (0.04) 0.66 (0.04) 0.66 (0.05) 0.60 (0.05) 0.64 (0.04) 0.63 (0.05) 0.62 (0.04) 0.63 (0.04)
Brec 0.84 (0.04) 0.86 (0.03) 0.81 (0.03) 0.81 (0.03) 0.88 (0.03) 0.81 (0.04) 0.80 (0.04) 0.86 (0.03) 0.83 (0.03) 0.82 (0.03)
Baclay 0.63 (0.07) 0.63 (0.07) 0.63 (0.07) 0.70 (0.07) 0.67 (0.07) 0.65 (0.07) 0.75 (0.06) 0.72 (0.06) 0.64 (0.07) 0.73 (0.06)
Butart 0.20 (0.05) 0.18 (0.04) 0.18 (0.04) 0.14 (0.03) 0.17 (0.04) 0.16 (0.03) 0.13 (0.03) 0.19 (0.04) 0.23 (0.05) 0.16 (0.04)
o 417 (1.51) 5.74 (2.30) 7.23 (2.36) 7.65 (2.53) 6.20 (2.28) 10.95 (3.60) 7.77 (2.36) 8.08 (3.14) 7.15 (2.55) 7.30 (2.92)
B 3.29 (1.33) 9.60 (3.45) 6.50 (2.21) 7.69 (2.47) 9.49 (3.31) 14.33 (4.11) 11.58 (3.39) 14.22 (4.16) 10.87 (3.27) 8.72 (3.16)
7 0.45 (0.05) 0.40 (0.05) 0.47 (0.05) 0.50 (0.05) 0.41 (0.05) 0.42 (0.05) 0.44 (0.05) 0.41 (0.05) 0.49 (0.06) 0.50 (0.05)
2 - - 0.84 (0.05) - - 0.77 (0.05) - - 0.64 (0.07)
b 46.72 (6.50) 31.08 (5.78) 26.31 (5.76) 20.24 (5.25) 29.71 (5.70) 25.11 (5.53) 18.31 (4.80) 26.07 (5.35) 23.20 (5.44) 23.24 (5.35)
ba 13.57 (4.46) 15.27 (4.74) 12.58 (4.40) 12.84 (4.48) 13.17 (4.43) 11.78 (4.38) 11.46 (4.09) 8.87 (3.42) 13.26 (4.50) 9.77 (3.50)
s - 1.34 (0.57) 1.69 (0.66) 1.22 (0.40) 2.38 (1.07) 2.05 (0.89) 1.35 (0.45) 521 (2.42) 2.96 (1.31) 5.19 (2.49)
T 16.62 (4.79) 25.53 (5.75) 33.00 (5.85) 36.48 (6.18) 32.89 (6.14) 38.93 (6.05) 41.82 (6.30) 26.65 (5.50) 29.50 (5.62) 27.86 (5.68)
0 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00) 0.01 (0.00)
0, 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02) 0.42 (0.02)
In(L) ~24490.10 ~24348.81 ~24306.36 ~2427535 ~24253.93 ~24248.42 -24199.92 ~2424221 -24229.74 -24190.18
AIC 50199.31 50024.30 49939.40 49985.92 49834.52 4982351 49835.06 49811.08 49786.16 49815.57
BIC 52147.08 52128.42 52043.52 52245.40 51938.64 51927.62 52094.54 51915.20 51890.28 52075.05
WAIC 1.92945e-90 1.94524e-52 5.30204e—34 4.20467e—44 3.14943e-11 7.77679e—09 2.41321e-11 3.87335e—06 0.999996 410211e—07
wBIC 1.71817e-56 1.94524e-52 5.30204e—34 7.7123e-78 3.14943e-11 7.77679e—09 4.42636e—45 3.87335e—06 0.999996 7.52418e-41
RMSD 0.0982 0.0991 0.0984 0.0982 0.0988 0.0974 0.0984 0.0978 0.0981 0.0978
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0.71 (0.02)
0.80 (0.01)
0.28 (0.03)
6.35 (0.93)
32.00 (3.33)
0.24 (0.03)
0.81 (0.03)
22.68 (3.08)
13.02 (2.73)
2.03 (0.30)

WAS-IC

0.69 (0.02)
0.80 (0.02)
0.28 (0.03)
7.24 (1.06)
32.79 (3.37)
0.25 (0.03)
22.02 (3.01)

WAS-I

0.69 (0.02)
0.91 (0.01)
0.32 (0.03)
3.83 (0.53)
40.02 (3.66)
0.18 (0.02)
22.22 (3.07)
15.41 (2.99)
1.27 (0.11)

WAS-C

GloVe-IC
0.70 (0.02)
0.81 (0.01)
0.26 (0.03)
10.46 (1.10)
31.98 (3.19)
0.27 (0.03)
0.95 (0.02)
19.65 (2.95)
10.70 (2.45)
3.25(0.87)
57.02 (3.96)
0.01 (0.00)
0.42 (0.01)

GloVe-I
0.67 (0.02)
0.79 (0.02)
0.26 (0.03)
13.94 (1.57)
33.95 (3.16)
0.29 (0.03)
18.48 (2.84)
11.16 (2.52)
2.52 (0.37)
68.11 (3.84)
0.01 (0.00)
0.42 (0.01)

GloVe-C
0.70 (0.02)
0.91 (0.01)
0.30 (0.03)
4.98 (0.72)
40.03 (3.63)
0.18 (0.02)
23.19 (3.14)
12.98 (2.68)
1.77 (0.42)
34.67 (3.78)
0.01 (0.00)
0.42 (0.01)

LSA-IC
0.71 (0.02)
0.81 (0.01)
0.26 (0.03)
7.76 (1.26)
30.74 (3.32)
0.26 (0.03)
0.91 (0.02)
20.10 (2.90)

0.70 (0.02)
0.80 (0.01)
0.27 (0.03)
9.30 (1.27)
32.31 (3.30)
0.28 (0.03)
19.94 (2.90)
10.91 (2.51)
1.95 (0.28)
51.39 (4.04)
0.01 (0.00)
0.42 (0.01)

LSA-I

0.72 (0.02)
0.90 (0.01)
0.28 (0.03)
3.63 (0.58)
37.65 (3.47)
0.19 (0.03)
25.92 (3.29)
14.21 (2.85)
1.00 (0.08)
29.32 (3.62)
0.01 (0.00)
0.42 (0.01)

LSA-C

0.83 (0.01)
0.86 (0.01)
0.23 (0.03)
3.90 (0.75)
34.88 (3.53)
0.22 (0.03)
37.24 (3.74)
14.69 (2.82)

Base

[}’ rec
.B start
d’s

Best-fitting parameters for Experiment 3. Reported values indicate averages over subjects; values in parentheses indicate standard error of the mean. RMSD is reported for the summary statistics shown in Fig. 4. LSA:
ﬁel’lC

latent semantic analysis; GloVe: global vectors model; WAS: word association spaces. C: context-based semantic cuing; [: item-based semantic cuing; IC: combined item and context-based semantic cuing.

Table 5
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item-based semantic cuing models. Increasing o causes
recall to become more stochastic (less dependent on the
particular context cue used). This may help the item-
based semantic cuing models to mimic the tendency of
context-based semantic cuing models to predict more
diffuse cuing of multiple items in the list (see Fig. 2d for
an illustration).

34.18 (3.68)
0.01 (0.00)
0.42 (0.01)
~53197.59
109893.59
115263.85
4.00501e—08
1.95914e—94
0.0958

14.63 (2.95)
2.27 (0.61)
36.62 (3.76)
0.01 (0.00)
0.42 (0.01)
~53322.92
109859.52
114832.31

0.0967
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