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Abstract 

The question of how knowledge structures, or schemas, are formed and how they influence 

memory and inference has posed long-standing challenges for cognitive scientists. Recent 

neuroscientific advances have improved our ability to quantify schemas as they are formed and 

during their expression in novel situations, thus improving our mechanistic understanding of 

their role in cognition. Here, we review recent evidence indicating that bidirectional interactions 

between the hippocampus and medial prefrontal cortex (mPFC) mediate schema formation, 

promoting creation of knowledge representations that integrate commonalities and emphasize 

goal-related differences among related events. We discuss how bidirectional hippocampus— 

mPFC interactions control memory reactivation by preferentially retrieving information that 

overlaps with current experience. Moreover, we review evidence for hippocampal binding 

processes that link current experience with reactivated memories, thereby supporting schema 

formation. We further focus on new data revealing that mPFC may guide formation of 

hippocampal schemas, by biasing encoding toward goal-relevant information while compressing 

irrelevant features that differ across events. Critically, by representing the commonalities and 

differences among previously and newly acquired information, schemas extend beyond direct 

experience to support flexible behaviors, such as inferential reasoning. Optimal behavior in 

familiar and novel contexts may thus be rooted in the dynamic interplay between neural 

structures that support schema formation and expression. As such, this chapter considers current 

perspectives on schemas in the context of emerging neural evidence, providing new insight into 

the relationship between memory and reasoning, as well as the implications of recent 

neuroscientific work on schema theory and cognition more broadly. 

 

Keywords: medial prefrontal cortex, hippocampus, integration, reactivation, compression, latent 

causes, hierarchical knowledge, reasoning 
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1. Introduction 

 

Schemas are knowledge frameworks that capture the structure of the environment and 

allow one to predict the correct actions to take in both familiar and novel contexts (Bartlett, 

1932; Piaget, 1954). Despite ongoing debate regarding the precise nature of schemas, current 

perspectives generally agree that schemas extract goal-relevant features that are common across 

individual episodes (Ghosh & Gilboa, 2014; Preston & Eichenbaum, 2013; van Kesteren et al., 

2012; Wang & Morris, 2010). We propose that schemas consist of context-specific associative 

structures that are abstracted across multiple events. Once formed, schemas further support 

inference and generalization. For example, across multiple visits to restaurants, formation of a 

restaurant schema would capture the common temporal structure across visits that reliably 

supports one’s goal of acquiring food. Upon entering a new restaurant, retrieval of one’s 

restaurant schema may allow one to infer that the presence of a host stand means that one should 

wait for the host to return before seating oneself. Furthermore, one could use schema knowledge 

to predict the event sequences that should follow next, including being handed a menu at one’s 

table, selecting a meal from the menu, placing an order with the server, and being served food. 

Schema formation thus promotes optimal behavior by minimizing uncertainty about how to act 

in new settings. 

While all theoretical models of schemas acknowledge the importance of commonalities 

to prediction and generalization (Ghosh & Gilboa, 2014), representation of differences is also 

essential to determining optimal behavior. Consider sit-down and fast food restaurants, which 

contain similar goal-relevant actions but different underlying temporal structures. Unlike the sit- 

down schema which dictates that one should wait to be seated, in a fast food restaurant, one 

should order food and wait at the counter for it before sitting at a table. Hence, if an individual 
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deployed the set of actions determined by their sit-down restaurant schema in the fast food 

context, they would wait to be seated without ever attaining their goal of food. We propose that 

schemas are hierarchically organized (Eichenbaum, 2017), with contextual features 

differentiating the precise sequence of actions to take in any given environment. 

Schemas therefore preferentially represent goal-relevant commonalities and differences 

that are critical to making predictions about behavior. Features of events that are neither common 

across episodes nor predictive are not represented in schemas. For instance, a one-time event in 

which the waiter drops your plate as he approaches your table would not be included in one’s 

restaurant schema. Although the dropped plate has consequences for one’s immediate goal of 

eating food, the specific event is not likely to predict what one should expect to happen during a 

future trip to a restaurant, and thus would not be represented in the restaurant schema. Schemas 

thus serve to reduce the vast amount of information in the environment, efficiently representing 

only those environmental features that support accurate generalization during future events. 

Once formed, schemas influence how new information is learned and represented. They 

evolve over time to incorporate new, predictive knowledge and also change when previously 

learned information is no longer accurate. When new experiences are similar to schema 

predictions, learning may be speeded as new content can be readily assimilated into existing 

schemas. For example, when visiting an expensive restaurant for the first time, one may be 

handed hot towels before and after the meal to cleanse one’s hands. These new events may be 

incorporated into the temporal structure represented within a restaurant schema so that one might 

expect to receive hot towels at the beginning and end of a meal in the future. Schema 

assimilation thus allows individuals to encode and organize new event information in the context 

of existing knowledge. 
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Whereas assimilation updates schemas to incorporate new schema-consistent content, 

accommodation involves restructuring of schemas to account for new experiences that deviate 

from what one expects based on current schemas. To promote optimal behavior in a host of 

situations, schemas must be refined when current knowledge structures no longer inform how to 

behave optimally in new settings. Consider the introduction of fast casual restaurants, in which 

the sequence of actions necessary to receive a meal is neither predicted by one’s previous 

experiences at sit-down restaurants nor by experiences at fast food restaurants. The structure of 

expectations for behavior therefore differs fundamentally among the restaurant types, and thus 

assimilation into the existing schema is not possible. If an individual deployed the set of actions 

determined by their sit-down predictions in a fast-casual restaurant, they would not receive food 

because they failed to order it at a counter. To better navigate this new scenario, the existing 

schema must be accommodated (i.e., changed). That is, new temporal and contextual features 

must be represented to support differentiation of the action predictions in each type of restaurant. 

Differentiation thus enables formation of more complex hierarchies of schematic knowledge to 

accommodate prediction in the widest variety of circumstances. 

In this chapter, we review recent neuroscientific and computational work on schemas. We 

first review the historical roots of schema theory, highlighting universal psychological principles 

that continue to influence contemporary research on schemas today. We further describe the 

longstanding challenges in using psychological terms to define the nature of schemas and set 

forth a neurocomputational framework that aims to define schemas in more mechanistic terms 

(see Figure 1.1). In particular, we review recent neuroscience studies that use representational 

analysis strategies to quantify the organization of schemas during their initial formation and later 

expression in novel situations. We further review evidence indicating that the hippocampus 
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represents the predictive structure of individual experiences (e.g., temporal structure of a 

restaurant experience) and binds current experience with reactivated memories (e.g., extracting 

commonalities across individual restaurant experiences), thereby supporting schema formation. 

We further discuss how hippocampal separation mechanisms allow for differentiation within 

schemas, allowing for hierarchical representation of context-specific predictions (e.g., sit-down 

versus fast food restaurants). Finally, we review recent data revealing that medial prefrontal 

cortex (mPFC) interactions with hippocampus play a key role in controlling schema formation 

and expression, by biasing encoding toward goal-relevant features and reactivating relevant 

knowledge during expression. Through delineating the basic building blocks that give rise to 

complex schematic structures, we provide a mechanistic framework for how schemas support 

optimal behavior in new situations including memory, reasoning, and decision making. 

 

2. Contemporary schema theory is grounded in historical roots 

 

A key principle of both historical and contemporary schema theories is that schemas 

exert a profound impact on new learning and memory. Original work on schemas focused on 

how individuals remembered structured narratives, with the aim of understanding how prior 

knowledge influenced formation and retrieval of new memories. For instance, Bartlett (1932) 

showed that repeated attempts to recall a complex Native American folktale depended on 

individuals’ prior experience of Western folktales. When retelling the Native American folktale 

from memory, participants frequently omitted events from the story that were atypical relative to 

the common structure of Western folktales, such as the depiction of a spirit leaving a character’s 

body. This finding suggests that when retrieving the Native American folktale, participants 

reconstructed the original episode through the lens of their existing knowledge of Western 
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folktales. Events from the Native American story that were not predicted from their Western 

folktale schema were less likely to be encoded into or retrieved from memory (see Alba & 

Hasher, 1983 for a comprehensive review of the effects of schemas on memory encoding and 

retrieval). This seminal work demonstrating how expectations based on prior knowledge guide 

how we interpret and remember new events continues to inspire modern theories of schema 

representation and expression today (van Kesteren et al., 2013; van Kesteren et al., 2014). 

A second principle of schemas is that they guide prediction and inference, which was 

originally supported by early work on spatial navigation in rodents. Tolman (1948) proposed that 

rodents construct a “cognitive map” of the environment, which can be thought of as a spatial 

schema that represents individual objects and both their locations in the world and locations 

relative to one another. Those spatial relationships among objects may be learned directly, by 

traversing from one object to another in a single trip along a path, or through inference, by 

linking information acquired through multiple trips through the environment. Formation of such 

spatial schemas facilitates behavior during subsequent experiences within the environment. For 

example, Tolman showed that rodents take less time and make fewer errors when navigating to a 

reward on a previously traversed route through the environment, suggesting that they are able to 

use the learned spatial schema to predict the series of locations that lead to the goal location. 

Furthermore, by associating individually-traversed maze trajectories to form a comprehensive 

schema of the environment, rodents are able to make inferences about new navigational routes. 

For example, when previously learned paths were blocked in the environment, rodents were able 

to quickly find an alternative route that represented the optimal path to a goal location, even if 

that trajectory had not been directly experienced previously. Schema formation therefore 
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promotes optimal behavior by promoting inference and minimizing uncertainty about how to act 

in new settings. 

A third principle of schemas is that they are highly adaptable; schemas evolve 

continually, changing to incorporate new information and to more efficiently represent the 

structure of the world. Piaget’s work in cognitive development provided an influential 

framework for understanding how schemas are updated or altered to incorporate new experiences 

(Piaget, 1972). Specifically, Piaget introduced the concepts of assimilation and accommodation 

as two processes through which schema knowledge may change. When new events are consistent 

with predictions derived from existing schemas, they are assimilated into that knowledge, 

providing additional evidence about predictive commonalities across events. However, when 

new events differ from schema predictions, accommodation must occur. During accommodation, 

either the knowledge contained in existing schemas is altered to make new predictions, or a new 

schema is created. While the psychological constructs of assimilation and accommodation 

remain influential today, Piaget’s descriptions of the mechanisms whereby we extract and 

internally represent commonalities and differences across events were far from precise. In 

subsequent sections, we present the challenges of testing schema theory and review recent 

neuroscientific work that has offered greater clarity on the mechanisms of schema formation, 

expression, and updating. 

 

3. Longstanding challenges of schema theory 

 
While the principles of early schema theories provide a framework for understanding the 

cognitive processes that schemas support, such as memory and inference, there has long been 
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substantial controversy about the precise, operational definition of a schema. One reason for this 

ongoing challenge is that both seminal and contemporary work on schemas tend to interpret 

memory and inference behavior through the lens of the unobservable psychological construct of 

a schema in the absence of direct measurement. For instance, Bartlett presumed that an activated 

schema influenced the reconstructive memory behavior he observed, and thus inferred its 

definition as “an active organization of past reactions, or of past experiences, which must always 

be supposed to be operating” (Bartlett, 1932). The continued tendency to define an internal 

psychological structure based on observable behavior poses substantial difficulty to moving 

beyond imprecise theoretical constructs. Even Bartlett admitted that he disliked the term schema, 

arguing that “it is at once too definite and too sketchy.” Indeed, Bartlett’s hesitation in adopting 

the word schema stemmed from the observation that it was “already widely used in controversial 

psychological writing to refer generally to any rather vaguely outlined theory.” Defining 

schemas in terms of the schema-like behavioral effects reported across the 90 years since the 

term’s introduction therefore necessitates a vague definition to encompass a wide variety of 

findings. Such imprecise definitions raise challenges for moving schema theory beyond a 

description of behavioral effects on memory and inference, particularly when considering the 

possible neural instantiation of schemas. 

To extend schema theory beyond descriptions of behavior, some theoretical models have 

attempted to provide more precise accounts of how schemas are instantiated. At one extreme, a 

class of models have proposed that a schema may be abstracted from the summed content of 

one’s corpus of specific memory traces at the time of expression (Hintzman, 1986; Restle, 1961). 

These models assume that schemas are not stored knowledge, but rather simply computed on the 

fly from individual memory traces. Proponents of such retrieval-based accounts of schemas 



9  

highlight the advantage of these models in avoiding the “vexing question of how schemas are 

learned” (Hintzman, 1986). In contrast, other prominent schema theories argue that these mental 

structures are represented in memory, and that new information is continuously integrated into 

existing schemas (Alba & Hasher, 1983). However, if this is the case, such a theory must also 

explain how new experience is incorporated into existing schemas. This chapter thus considers 

schema theory in the context of emerging neuroscientific work which has improved our ability to 

quantify schemas, offering new insight into the “vexing question” of how they are formed. By 

directly isolating the neural mechanisms that support schema formation and expression under 

controlled conditions, the approach has furthered our mechanistic understanding of schema 

theory and the role of schemas in cognition. 

 

4. Neural mechanisms that support schema formation 

 

In this section, we provide a neuroscientific and computational framework for how 

individuals come to represent the predictive structure of the world, a question which has posed 

long-standing challenges for schema theory. We build on the theoretical argument that schemas 

are a highly structured form of knowledge and directly reflect the systematic structure of our 

environment, owing to the fact that “the perceived world is not an unstructured total set of 

equiprobably co-occurring attributes … [T]he material objects of the world possess high 

correlational structure” (Rosch et al., 1976). Recent neuroscientific advances have allowed us to 

isolate mechanisms that support the core hypothesized principles of schemas, in particular by 

allowing us to measure representational knowledge structures as they are formed, expressed, and 

updated. 
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We focus on new findings from electrophysiological and human neuroimaging studies 

that use representational analysis approaches to quantify how the correlational structure of the 

world is reflected in neural representations. In addition, we review perspectives derived from 

computational models, which have provided powerful mathematical frameworks for explaining 

how incoming information from the world is reduced into schema representations that emphasize 

goal-relevant features of the environment. We further propose a mechanistic framework for how 

the brain expresses and updates schemas in new contexts to account for new environmental 

relationships. In doing so, we offer a mechanistic update to Piaget’s concepts of assimilation and 

accommodation, demonstrating how specific computational and neural functions support these 

proposed processes. 

 

4.1. Hippocampal binding supports context-specific associative predictions 

 

At a basic level, schemas require formation of associative memories that link items and 

contexts to specific behaviors and outcomes. The auto-associative properties of the hippocampal 

network are thought to be critical for such binding (Manns & Eichenbaum, 2006; Marr, 1971; 

McClelland et al., 1995). For instance, recent work in statistical learning demonstrates that 

hippocampal representations become more similar for items that reliably occur one after another 

in a continuous sequence of events (Schapiro et al., 2012), reflecting how they are bound 

together in memory. Similarly, complimentary work in spatial navigation indicates that 

hippocampal representations become more similar for objects judged as more spatially proximal 

in a recently learned virtual environment (Deuker et al., 2016). Such representational binding is 

thought to support predictive reinstatement during memory retrieval to guide efficient decision 

making. When cued with a previously experienced stimulus, hippocampal pattern completion 
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mechanisms result in reinstatement of the neural representation of bound stimuli in anticipation 

of the stimulus that should appear next in either time or space (Johnson & Redish, 2007; 

Karlsson & Frank, 2009; Redish, 2016; Stachenfeld et al., 2017). 

Such anticipatory predictions are often context-specific—another key facet for schema 

representation. For example, a recent study used a context-specific prediction paradigm, in which 

the same cue stimulus (item A) when followed by different actions (a left or right button press) 

led to different outcomes (presentation of item B or presentation of item C). Hippocampal 

representations differentiated the sequences that predicted different stimulus outcomes, allowing 

for accurate reinstatement of an anticipated stimulus outcome after a cue item-action 

combination (Hindy et al., 2016). Furthermore, when associative relationships are less reliable, 

hippocampal representations become dissimilar for items that co-occur some but not all of the 

time (Schapiro et al., 2012), suggesting the mechanism through which content-specific 

differentiation might occur. While these findings concentrate on representation of directly 

observed associations, the basic binding and reinstatement mechanisms reviewed here serve as a 

foundation for forming more complex associative schemas that extract structure beyond direct 

experience. 

 

4.2 Hippocampal associative mechanisms enable inference about commonalities among 

events 

Extracting associative structure across multiple events—an inherent property of 

schemas—requires both reactivating memories for events that overlap with new experiences and 

binding new information with reactivated memories. Lesion work in both rodents (Bunsey & 
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Eichenbaum, 1996; Dusek & Eichenbaum, 1997) and humans (Pajkert et al., 2017) shows that 

the hippocampus is necessary for extracting commonalities across distinct events. These studies 

typically have employed associative or transitive inference paradigms to assess the impact of 

hippocampal lesions on cross-event associative knowledge acquisition. In one such study (Dusek 

& Eichenbaum, 1997), rodents learned a set of odor paired associates through trial-and-error 

reinforcement, whereby they were exposed to two items and were tasked with choosing which 

one led to reward (e.g., A > B). Across five different odors, there was a hierarchical relationship 

of reward outcomes, for which item A was always rewarded in the presence of B, B was always 

rewarded in the presence of C, etc. (i.e., A > B, B > C, C > D, D > E). As such, rodents could 

learn the directly experienced associations (e.g., A should be selected over B) as well as the full 

hierarchy of reward outcomes that would support inference about novel pair combinations during 

a critical knowledge test (e.g., B should be selected over D). Damage to the hippocampus 

resulted in preserved memory for the individual associations (e.g., B > C, C > D) but impaired 

performance on inferences that required knowledge of the full hierarchy (e.g., B > D). These 

findings indicate that hippocampal associative mechanisms are critical for extracting hierarchical 

structure across individual experiences. 

Recent neuroimaging studies have provided additional mechanistic insight into how 

knowledge extraction across episodes occurs. A first step in forming knowledge schemas is 

reactivating previously experienced events that share features with current experiences, to allow 

for the extraction of commonalities (Morton et al., 2017; Schlichting & Preston, 2015). When a 

new experience overlaps with a prior episode, hippocampal pattern completion mechanisms 

trigger reactivation of the previous memory in both humans (Gershman, Schapiro, et al., 2013; 

Kuhl et al., 2012; Zeithamova et al., 2012) and animals (Ji & Wilson, 2007; Karlsson & Frank, 
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2009). Such reactivation promotes inference about unobserved relationships similar to those 

indexed in the rodent lesion work reviewed above (Shohamy & Wagner, 2008; Wimmer & 

Shohamy, 2012; Zeithamova et al., 2012). For instance, in one study (Zeithamova et al., 2012), 

participants learned overlapping pairs of associations (e.g., AB: chair & zucchini and BC: 

zucchini & blender) and were later asked to make judgements about the relationships between 

the two items that shared a common associate (i.e., AC inference: chair & blender). Those 

participants who reactivated related memory elements during overlapping event encoding (e.g., 

reactivating A when studying BC) were superior at making novel inferences. These findings 

suggest that reactivating related memories during learning promotes binding of the past with the 

present, leading to formation of integrated memory networks that represent associations beyond 

direct experience. Such knowledge extraction through integration may support prediction and 

inference in novel situations and likely represents the first step in schema formation (Preston & 

Eichenbaum, 2013). 

More direct evidence for cross-episode hippocampal integration comes from recent 

human neuroimaging studies using multivariate analysis approaches to assess how representation 

of elements of overlapping memories shifts to reflect representation of commonalities (Collin et 

al., 2015; Mack et al., 2016; Schlichting et al., 2015). Two such studies showed that 

hippocampus represented indirectly related elements (i.e., A and C items) from overlapping 

events (AB and BC pairs) as more similar to one another after learning (Schlichting et al., 2015), 

with hippocampal integration increasing over time as a function of consolidation (Tompary & 

Davachi, 2017). Such representation of unobserved relationships within hippocampus has further 

been linked to increased ability to infer connections among individual events (Collin et al., 

2015). 
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Within the hippocampus, the CA1 subfield may play a particular role in formation of 

integrated memory networks that represent commonalities across experiences given its 

anatomical properties and patterns of connectivity. CA1 receives input about reactivated 

memories from CA3 and converging input about current sensory experience from entorhinal 

cortex (Suh et al., 2011; van Strien et al., 2009; Witter, 2011). As such, CA1 simultaneously 

processes newly encoded and reactivated memory representations (Larkin et al., 2014; Lisman & 

Grace, 2005). The CA1 region is thus well-situated to integrate incoming experience with 

previously acquired memories, promoting creation of knowledge representations that extract 

commonalities among separate events. In support of this idea, simulations generated from a 

computational model of the hippocampal circuit show that the CA1 subfield uniquely represented 

temporal regularities and associative commonalities derived across multiple events (Schapiro et 

al., 2017). Reactivation of prior event details during new event encoding within human CA1 has 

further been linked with a superior ability to infer connections among related events (Schlichting 

et al., 2014). 

Perhaps the most direct evidence for the common representation of events within CA1 

comes from a contextual fear conditioning study in mice, in which the activity of multiple CA1 

neurons was imaged simultaneously (Cai et al., 2016). In this work, animals were exposed to an 

initial spatial context (context A) and a second context (context B) after several hours. Even 

though these events were separated by a long interval, the CA1 ensembles active during these 

two events were highly overlapping. Moreover, when returned to the second context (B) two 

days later and given a foot shock, rodents transferred the learned fear response from the initial 

context (A) that shared an overlapping hippocampal representation, demonstrating how memory 
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integration supports generalization. Importantly, when mice failed to form overlapping 

representations of the two spatial contexts within CA1, generalization of fear was not observed. 

Collectively, these results from both human and animal studies indicate that overlapping 

representations in hippocampus, and CA1 in particular, allow for the representation of 

commonalities that go beyond direct experience to support both inference and generalization. 

While these studies inform the mechanisms that support formation of commonalities across a 

limited set of individual associations, the same processes are likely to be essential to the 

formation of more complex schematic relationships (Mack et al., 2018). As evidence for the 

hippocampus’ ability to represent associative relationships among numerous stimuli, several 

recent studies indicate that information about the temporal, spatial, and conceptual distances 

between multiple objects can be read out from hippocampal activity patterns (Garvert et al., 

2017; Mack et al., 2016; Schapiro et al., 2016). 

 

4.3 Hippocampal differentiation supports hierarchical representation 

 
Hierarchical representation may be an essential part of how schemas are organized. 

 

Representing commonalities across events allows for the extraction of general principles that can 

guide predictive behavior, but it is important that such predictions be context- and goal-specific. 

Consider again the differences between fast food and sit-down restaurants, which have similar 

goal-relevant actions but must be enacted in a different temporal order to successfully obtain 

one’s meal. Within one’s restaurant schema, it will therefore be necessary to differentiate among 

types of restaurants to accurately predict the relationships between items, actions, and outcomes. 

Recent electrophysiological data from rodents indicates that hippocampus forms hierarchical 
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representations that simultaneously represent the commonalities among and differences between 

events to support such context-specific behavior (McKenzie et al., 2014). 

In a context-guided object association task, rodents were presented with two sets of 

objects (AB and CD). On each trial, the objects from one of the sets were presented 

simultaneously, and the animals had to select the object that was associated with reward. 

Importantly, the association between an object and reward in this task was context dependent 

(Figure 1.2A). For instance, when objects A and B were presented in one context, A was always 

associated with reward. However, when the same objects were presented in a second, 

perceptually distinct context, the reward contingencies changed, with object B being associated 

with reward in the second context. The context-specific reward associations were shared across 

the two object sets, such that objects A and C were always rewarded in the same context, with B 

and D being rewarded in the opposing context (Figure 1.2B). Across trials, the positions of the 

two objects (i.e., whether they appeared on the left or right side of the context) further varied. 

This task design thus allowed the researchers to quantify how population activity within the 

hippocampus varied as a function of item, context, reward valence, and spatial position, enabling 

assessment of whether representation of the different task features were hierarchically organized 

(McKenzie et al., 2014). 

The results indicated that hippocampal population activity was anticorrelated when 

rodents approached the same item in different contexts (Figure 1.2C). In other words, the same 

object elicited different patterns of hippocampal response when presented in the different 

contexts, reflecting the fact that different outcomes were associated with the same object in the 

two contexts. The hippocampus simultaneously represented similarities among events that 

occurred within the same context. Repeated presentation of the same object within the same 
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context evoked the most similar responses within hippocampus, followed by objects associated 

with the same reward outcome (e.g., A and C), and objects in the same location (regardless of 

their identity or reward outcome). This pattern of response indicates hierarchical representation 

of the task properties in hippocampus, with context information being differentiated at the 

highest level of representation and commonalities by position, valence, and object being 

represented at successive levels (Figure 1.2C). As such, this observation stands as one of the 

clearest demonstrations of a representational schema within hippocampus to date. Importantly, 

the context specific associations represented in this hierarchy speeded learning of new object- 

context reward associations (McKenzie et al., 2014), demonstrating how schemas can facilitate 

acquisition of new content. 

 

4.4 Latent cause models and schemas 

 

In the examples above, relatively simple rules dictate how different actions in different 

contexts result in different outcomes. In the real world, however, the relationship between 

behavior and outcomes is rarely explained via simple rules. Schemas must therefore represent a 

number of multidimensional features that predict which behaviors are most adaptive in any given 

context. Latent cause models provide a computational means to represent multidimensional 

predictions, and thus may capture an essential representational requirement of schemas. Latent 

cause models propose that to resolve uncertainty about the structure of the world and exploit that 

structure in new situations, one must infer and represent the hidden causes of direct observations 

(Gershman et al., 2017). For example, to retrieve the correct schema when entering a restaurant, 

one may infer what type of restaurant it is (e.g., formal or casual) based on visual cues (e.g., 

seeing a patron wearing a suit). Latent causes may be thought of as an index to a 
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multidimensional feature space that codes associative relationships among event elements, 

actions, and outcomes. Latent causes therefore tap into structured associative knowledge to 

acquire beliefs about the combination of associations that consistently lead to an observed 

outcome. Through acquiring a belief about the latent causes of observed outcomes, one may later 

use the belief to guide prediction about one’s current state, and hence, generate predictions for 

how to behave optimally (see Box 1.1). 

We next take a simple example from fear conditioning as a useful way of demonstrating 

how latent causes mediate representation of associative predictions. In Pavlovian reinforcement 

learning, a rodent is presented with a conditioned stimulus (e.g., a tone) followed by an 

unconditioned stimulus (e.g., a shock) that naturally elicits an unconditioned response (e.g., 

freezing). Following repeated exposures to the tone-shock pairing, the tone reliably elicits the 

freezing response even in the absence of a shock, indicating that the animal has learned the 

relationship among the stimulus and the outcome (Rescorla, 1988). The mechanistic explanation 

for fear conditioning offered within the latent cause model is that repeated tone-shock 

experiences are assigned to the same latent cause—a “fear acquisition” state (Gershman et al., 

2017). 

When a previously inferred latent cause is thought to be active again, such as during 

repeated exposures to the tone, it promotes retrieval of the memory associated with that latent 

cause (i.e., the collection of experiences with the tone-shock pairing). These latent structures are 

subsequently updated in accordance with how well the inferred latent structure accounts for 

current experience, resulting in strengthening of commonalities and weakening of idiosyncratic 

elements between overlapping experiences that are not predictive. In this case, the associative 

weights between the tone and shock underlying the fear acquisition state will strengthen over 



19  

repeated experiences, promoting efficient retrieval and prediction of a shock when subsequently 

presented with a tone alone, thereby eliciting freezing. 

As discussed above, schemas not only represent commonalities among events, but also 

differences. In line with this idea, the latent cause model provides a plausible explanation for 

how associative knowledge structures simultaneously represent key distinctions between highly 

overlapping experiences. Fear conditioning again provides a useful example for how 

differentiation guides formation of latent causes. During fear extinction, the animal’s freezing 

response gradually diminishes when the tone is repeatedly presented alone, without a 

corresponding shock. Yet findings indicate that extinction of fear is temporary and recovers with 

the passage of time (Bouton, 2004). Instead of overwriting the original fear memory, the latent 

cause model suggests that the animal infers the presence of a new “extinction” state (Gershman 

et al., 2010). 

During extinction, the presentation of the tone will activate a belief (based on the latent 

cause) that the shock should follow. When the predicted shock is not administered, it is 

beneficial to generate a new causal structure to adequately account for the unexpected lack of 

shock (Gershman et al., 2010; Gershman, Jones, et al., 2013). The result is two differentiable 

states that assign different latent causes to the situations; one in which the tone is followed by a 

shock versus one in which it is not. In other words, because latent structures are updated in 

accordance with how well the inferred state accounts for current experience, new latent causes 

will be inferred when predictions made from existing latent causes are violated. Recent empirical 

evidence shows that separate “fear” and “extinction” states are represented in different 

hippocampal ensembles during extinction (Lacagnina et al., 2019). Such empirical data further 
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demonstrate how differentiation is a key facet through which we organize associative predictions 

and make inferences about expectations from that knowledge. 

Latent cause models can scale up from relatively simple associative predictions, such as 

in the fear conditioning example above, to account for more complex associative spaces for 

which multidimensional task features need to be represented to accurately predict outcomes. For 

example, in one recent study (Chan et al., 2016), individuals were placed in a hypothetical zoo 

which had four different sectors (Figure 1.2D). The sectors of the zoo were differentiated by the 

probability of seeing different animals in each region. For instance, in the blue sector, 

participants were most likely to see elephants and giraffes and less likely to see lions and zebras, 

whereas, in the pink sector, the probability of seeing any one of those same animals was similar. 

Participants first learned about the individual associations between the zoo sectors and each 

animal, forming a likelihood distribution of the probability of seeing any one animal in a 

particular sector of the zoo (Figure 1.2E). These probability distributions, which reflect latent 

beliefs about the structure of the zoo, then allowed individuals to make inferences about their 

location in the zoo based solely on which animals they observed in a context (Figure 1.2D, 

bottom panel). 

 

4.5 Medial prefrontal cortex interacts with hippocampus to extract latent causes 

 

If hippocampal binding mechanisms support formation of structured associative 

knowledge that represents commonalities and differences across individual events, mPFC may 

tap into that associative knowledge to index beliefs about the combination of associations that 

consistently lead to a desired outcome (i.e., latent causes). Medial PFC has direct anatomical 

connections to the hippocampus, receiving inputs primarily from the anterior portion of CA1 
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(Barbas & Blatt, 1995; Cavada et al., 2000). Medial PFC also has extensive connections with a 

diverse set of sensory, limbic, and subcortical structures (Cavada et al., 2000). These anatomical 

properties of mPFC may make it especially well suited at indexing how multidimensional 

features of the environment relate to one’s actions and goals. Accordingly, computations and 

representations supported by both hippocampus and mPFC may be essential to schemas, with 

their interactions determining how schemas are formed and later accessed (Preston & 

Eichenbaum, 2013; Schlichting & Preston, 2015; Wikenheiser & Schoenbaum, 2016). 

Consistent with this idea, mPFC—hippocampal interactions in both rodents (Jadhav et 

al., 2016; Yu et al., 2018) and humans (Liu et al., 2017; Schlichting & Preston, 2016; 

Zeithamova et al., 2012) are enhanced when new events overlap with existing knowledge, with 

their connectivity predicting individuals’ ability to infer relationships among discrete events 

(Schlichting & Preston, 2016; Zeithamova et al., 2012). Moreover, while lesions to mPFC do not 

impair direct learning of simple associations, they do impair inference about across-event 

relationships (Koscik & Tranel, 2012; Spalding et al., 2018) and individuals’ ability to learn 

from observed outcomes (Kumaran et al., 2015). These lesion findings suggest that mPFC may 

draw upon associative input from hippocampus to extract information about associative features 

that lead to specific outcomes. In context-dependent learning tasks, information about the 

multidimensional features that predict different outcomes is reflected in the population activity of 

mPFC neurons (Farovik et al., 2015; Wikenheiser et al., 2017). However, when hippocampal 

inputs to mPFC are temporally inactivated, predictive reinstatement of expected outcomes in 

mPFC is attenuated, and there is no evidence for the formation of multidimensional feature 

representations within the region (Wikenheiser et al., 2017). These data indicate that 
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hippocampal input is not only necessary to mPFC coding of predicted outcomes, but also mPFC 

representation of the inferred multidimensional states that lead to those outcomes. 

A number of recent human neuroimaging studies have further implicated mPFC in 

schema representations that index goal-relevant commonalities and differences acquired across 

multiple events. Like hippocampus, mPFC representations of overlapping memory elements 

become more similar to one another after learning (Schlichting et al., 2015), with consolidation 

increasing such learning-related representation of event commonalities within mPFC (Tompary 

& Davachi, 2017). Together with hippocampus, mPFC also represents temporal regularities 

extracted across multiple event sequences. For instance, in temporal community learning 

(Schapiro et al., 2013; Schapiro et al., 2016), individuals incidentally view a sequence of objects, 

in which the order of the objects is determined by an underlying structure with three temporal 

communities determined by their transition probabilities (Figure 1.2G). With learning, 

hippocampal representations become more similar for objects from the same temporal 

community and further distinguish members of different temporal communities, reflecting 

acquisition of the hierarchical temporal structure (Schapiro et al., 2016). Medial PFC responses 

also reflect learning of the structure, with increased engagement as participants view a sequence 

of objects from the same temporal community, suggesting its role in predicting what might be 

seen next in the sequence (Schapiro et al., 2013). Furthermore, mPFC—hippocampal 

connectivity is altered at the community boundaries, where a transition to a new temporal “state” 

is highly likely (Schapiro et al., 2013). Such findings provide initial speculative evidence for the 

role mPFC—hippocampal interactions in extracting the latent causes that represent 

multidimensional predictions about the environment. 
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More recently, multivariate analysis approaches have shown that hierarchical 

representations of task structures can be decoded from patterns of mPFC activation during well- 

learned tasks (Schuck et al., 2016) similar to work in rodents (Wikenheiser et al., 2017). These 

hierarchical representations reflected sixteen unobservable task states that predicted the possible 

sequences of actions participants could take to achieve a goal. Activation of a given task state 

during task performance within mPFC not only predicted when participants executed the correct 

choices, but was also predictive of their individual pattern of errors. Combining such 

representational neuroimaging approaches with computational modeling, Chan and colleagues 

(2016) further found that mPFC responses directly encoded information about inferred latent 

causes that represent how different combinations of task features are related to different outcome 

contexts (Figure 1.2F). When considered in light of other recent evidence for mPFC 

representation of common structure across real-world narratives (Baldassano et al., 2018), these 

findings provide compelling evidence for the role of mPFC in representing schematic 

information about latent causes. 

In the same way hippocampal inputs to mPFC influence representation of the inferred 

latent causes of outcomes, top-down signals from mPFC may refine representation of 

hierarchical structure within hippocampus during schema formation. The mPFC—hippocampal 

circuit can thus be thought of as a dynamic loop that works together to organize knowledge in 

the most adaptive way possible (Figure 1.1). Specifically, mPFC may bias hippocampal 

encoding processes to emphasize the most goal-relevant features of the environment, while 

compressing irrelevant features that are not predictive of task outcomes. Lesion studies indicate 

that the mPFC plays a critical role in allocating attention to predictive task attributes during both 

decision making and subjective valuation (Vaidya & Fellows, 2015, 2016; Vaidya et al., 2018). 
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Recent model-based neuroimaging studies have provided further evidence that mPFC attentional 

processes influence extraction of latent causes and shape representation within hippocampus 

(Mack et al., 2016; Mack et al., 2020). 

Specifically, in these studies, participants learned to classify insects into categories based 

on different combinations of predictive features. Some categorization problems required 

attention to a single feature, and others a combination of two or three features (Figure 1.3A). 

Successful learning thus required individuals to shift attention to the most diagnostic features for 

any given categorization problem. Across learning, mPFC representations extracted latent factors 

that captured the structure of the categories (Mack et al., 2020). Importantly, the dimensionality 

of the mPFC representations that emerged with learning tracked the problem complexity, with 

reduced dimensionality for simpler problems that required attention to fewer features and was 

directly related to participants’ attentional strategies. Furthermore, mPFC—hippocampal 

interactions early in learning (Figure 1.3B) resulted in the formation of structured 

representations within hippocampus (Figure 1.3A), wherein category-relevant commonalities 

and differences were emphasized (Mack et al., 2016). These results suggest that the extraction of 

latent causes in mPFC may in turn shape how events are represented in hippocampus; associative 

features that are not reliably predictive of outcomes, and therefore not indexed by a latent cause, 

may ultimately be pruned from hippocampal representations (Kim et al., 2014; Kim et al., 2017). 

 
 

5. Neural mechanisms supporting schema expression 

 
Medial PFC—hippocampal interactions may be just as critical to expression of schemas 

once learned. When new situations overlap with existing knowledge, hippocampal pattern 
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completion results in replay of related experiences within the circuit (Foster & Wilson, 2006; 

Wikenheiser & Redish, 2013). Replay events within CA1 in particular modulate spiking activity 

within mPFC, reflecting the transmission of information associated with the current context to 

mPFC (Jadhav et al., 2016; Tang et al., 2017; Wang & Ikemoto, 2016). Furthermore, the 

memory content transferred from hippocampus to mPFC is highly structured, reflecting the 

detailed information about associative commonalities and differences (Tang et al., 2017). 

Medial PFC may use this information to guide learning and decision making in the new 

context. For instance, mPFC activity is enhanced when new events can be processed in terms of 

an existing schema, facilitating subsequent memory for the new content (Tse et al., 2011; van 

Kesteren et al., 2013). When mPFC is damaged, however, schema-facilitated learning effects are 

eliminated (Spalding et al., 2015) highlighting the necessity of mPFC for the flexible expression 

of knowledge. In particular, mPFC may use reinstated associative information from 

hippocampus to generate predictions about which latent causes are most related to the current 

context; from those predictions, the mPFC may guide selection of the most adaptive set of 

actions to take to achieve one’s desired goal. Consistent with this hypothesis, patients with 

mPFC lesions have difficulty generating options to solve problems in real-world scenarios, such 

as having lunch at a restaurant and forgetting one’s wallet at home (Peters et al., 2017). Both in 

terms of the number of options generated and in the effectiveness of generated options, patients 

perform less well than healthy controls in deploying schematic knowledge to efficiently achieve 

their goals. 

Reactivation of potential latent causes by mPFC may further refine retrieval of 

associative memory content within hippocampus. A large body of evidence indicates that PFC 

plays a specialized role in controlling hippocampal memory retrieval (Moscovitch, 1992; Simons 
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& Spiers, 2003). Medial PFC in particular may guide hippocampal retrieval in a similar manner 

to its influence on hippocampal encoding, by biasing retrieval toward the memories most 

relevant to the current context and suppressing activation of irrelevant content (Eichenbaum, 

2017; Preston & Eichenbaum, 2013). Medial PFC—hippocampal interactions are enhanced 

when rodents stop at critical choice points in foraging tasks to consider the paths that might lead 

to a potential goal (Redish, 2016), with hippocampal responses reflecting forward replay of 

possible trajectories (Wikenheiser & Redish, 2015). Through the recent discovery of a 

monosynaptic pathway from mPFC to hippocampus in mice, researchers have directly shown 

that mPFC activity controls which hippocampal ensembles are active during memory retrieval 

and thus promotes context-specific retrieval of associative content within hippocampus 

(Rajasethupathy et al., 2015). 

Additional evidence for the dynamic interactions between mPFC and hippocampus 

during context-dependent memory retrieval comes from the task depicted in Figure 1.2A. 

When rodents first entered one of the two task contexts, hippocampus relayed information 

about context-relevant associations to mPFC (Place et al., 2016). However, as the rodents 

approached the objects to make a choice, the flow of information reversed such that mPFC 

activity led the hippocampus. Critically, when mPFC is inactivated in this task, hippocampal 

population responses during object sampling no longer distinguish which options lead to reward 

in a given context, resulting in less accurate choices (Navawongse & Eichenbaum, 2013). 

Collectively, these results indicate that mPFC exerts top-down control of memory reinstatement 

in hippocampus in service of optimal decision making. 
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6. Neural mechanisms supporting schema updating 

 

When schemas are flexibly expressed in new situations or learning contexts, there is often 

a need to update schemas to account for new information, both when it is consistent with 

predictions derived from schemas and when schema predictions are violated. In this section, we 

revisit Piaget’s concepts of assimilation and accommodation, reviewing mechanistic evidence for 

the role of the hippocampus and mPFC in these two proposed processes. First, we begin with 

assimilation, which proposes that information congruent with schema predictions is rapidly 

incorporated into existing knowledge. 

In a seminal set of studies, Tse and colleagues (2007; 2011) demonstrated the necessity 

of both hippocampus and mPFC in assimilation. In these experiments, rodents learned multiple 

flavor-location pairings within a spatial arena (Figure 1.3C). Over the course of several training 

sessions, rodents were placed in the arena and cued with one of the six flavors. Over time, the 

rodents increased their digging at the spatial locations associated with cued flavors, 

demonstrating learning of the initial spatial schema. The critical manipulation in these studies 

was the introduction of two new flavor-location pairings within the same environment (Figure 

1.3D). While the rodents required several weeks to learn the initial flavor-location pairings, the 

two new pairings were learned within a single training session, providing behavioral evidence 

for their rapid assimilation into the existing spatial schema (Tse et al., 2007). 

Critically, the researchers showed that the hippocampus was necessary for assimilating 

new pairs into the existing structure. Lesions to the hippocampus performed 24 hours after the 

introduction of the new pairs did not impact rodents’ memory for either the original or newly 

learned pairs, further suggesting their rapid assimilation into cortical memory stores (Figure 

1.3E). However, hippocampal lesions did prevent the rodents from incorporating additional new 
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pairs into the spatial schema, indicating that hippocampus plays a key role in binding new events 

with existing memories. Moreover, follow up work with the same paradigm (Tse et al., 2011) 

showed that mPFC coordinates with hippocampus during schema assimilation. During the 

introduction of the new pairs, hippocampal-dependent learning was further supported by 

upregulation of immediate early genes in mPFC. Pharmacological inactivation of the mPFC 

disrupted the retrieval of both the originally learned spatial schema and new pairs (Figure 1.3F), 

and also disrupted acquisition of new pairs within the same environment. These results 

demonstrate a critical role for hippocampus and mPFC in schema expression and assimilation, as 

well as how schema knowledge has a facilitative effect on new learning. 

Schema updating may also occur through accommodation when new events signal an 

existing schema is no longer a valid representation of environmental contingencies. In this case, 

the existing schema may be altered, or a new schema created to account for changes in the 

environment. As with initial learning, schema modification may be supported by mPFC— 

hippocampal interactions as indicated by the recent work in category learning discussed 

previously (Mack et al., 2016; Mack et al., 2020). In the category learning task depicted in 

Figure 1.3A, participants learn to categorize the insects according to one rule before the 

classification problem changes, requiring participants learn a new category structure for the same 

set of stimuli. In these studies, participants learn to categorize the insects according to three 

distinct rules in succession. Thus, the task demands require that participants update their 

category schemas to account for changes in the problem rules. During the periods when the 

category learning problem switches, increased connectivity between the mPFC and hippocampus 

is observed (Figure 1.3B). Moreover, hippocampal representations themselves are altered, 

rapidly changing how they represent the same stimuli after a problem switch (Figure 1.3A). 

Specifically, the hippocampus reorganizes the pattern of similarities and differences to focus 
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organization on the features that are newly diagnostic of category membership (Mack et al., 

2016). These findings provide direct evidence for how hippocampal representations themselves 

are altered through accommodation. 

Schema updating is thought to directly rely on prediction error signals (Schlichting & 

Preston, 2015). When new events differ from reactivated memories, hippocampal engagement, 

and CA1 activity in particular (Chen et al., 2011; Zeithamova et al., 2016), increases, signaling 

when predictive associative relationships have changed (Kumaran & Maguire, 2009; Olsen et al., 

2012). Prediction error can promote the modification of hippocampal associative representations, 

either directly (Kim et al., 2014; Kim et al., 2017) or possibly through interactions with mPFC 

(Dunsmoor et al., 2019). Moreover, prediction error signals may promote memory updating in a 

dose dependent manner. When prediction errors are large, new schemas may be created. 

However, when prediction errors are smaller, schema updating may occur. 

 
For instance, after learning of an association between a tone and a shock, extinction is 

more effective when extinction trials (presentation of a tone in the absence of a shock) are 

introduced gradually, interspersed with presentation of tone-shock pairings and gradually 

increasing in frequency until only extinction trials are presented (Gershman, Jones, et al., 2013). 

Spontaneous recovery of fear memories is less likely under such conditions, relative to the case 

when the schedule is reversed such that extinction trials are more frequent at the beginning of 

extinction learning and tone-shock pairings are more frequent at the end. In the gradual case, 

smaller prediction errors may promote updating of the original fear memory, thus permanently 

reducing the fear response. In contrast, large prediction errors elicited when extinction trials are 

concentrated early in the trial sequence may lead to formation of an extinction memory that is 

separate from the initial fear memory, resulting in the spontaneous recovery of fear at later 
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timepoints. Thinking in terms of latent causes, the massed extinction training may be assigned to 

a different latent cause from the original tone-shock pairings, whereas the gradual extinction case 

may update the associative predictions indexed by an existing latent cause. Hippocampal 

prediction errors in particular may help drive updating of latent causes represented in mPFC 

(Figure 1.1), determining when existing schemas are updated versus when new schemas are 

created. 

 

7. Summary of framework for the neural instantiation of schemas 

 

Schema theory has deep historical roots in psychological research, which has long 

demonstrated the influence of structured knowledge on behavior. Although early schema theory 

raised fundamental questions regarding how schematic knowledge is formed and updated, the 

inherent difficulty of measuring these complex representational structures in situ has impeded 

our understanding of the precise mechanisms involved. Moreover, these measurement challenges 

have contributed to the longstanding controversy regarding the precise definition of the term 

“schema.” The relatively recent introduction of new representational analysis techniques has 

since afforded direct measurement of neural schemas as they are formed and later expressed. In 

the present chapter, we thus provide a testable framework that explains the psychological 

principles associated with schemas in more mechanistic, neural terms. In particular, we propose a 

representational account that defines schemas in terms of how the brain represents overlapping 

experiences, thus beginning to address the “vexing” question of how a schema is learned. In light 

of the growing body of neuroscience work on the topic, we argue that the mPFC—hippocampal 

circuit serves as a dynamic loop that works together to extract and organize schematic 

knowledge (Figure 1.1). We further situate this operational definition with respect to the 

historical principles that guide schema theory, highlighting how this dynamic circuit captures the 
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most goal-relevant features of the environment. The proposed neural framework provides a 

strong foundation from which to understand the psychological effects of schemas on behavior. 

The present neural framework describes how initial schemas are formed, how they are 

expressed in new situations, and how they are updated over time to represent the complex 

structure of the environment, providing a comprehensive theory of schemas. As reviewed here, 

extensive neurocomputational evidence indicates that hippocampus and mPFC are both 

necessary to schema representation, with their interactions mediating schema formation by 

preferentially representing commonalities and differences across individual experiences (see 

Figure 1.1). Specifically, hippocampal pattern completion mechanisms trigger reactivation of 

events that overlap with new experiences. Hippocampus may then bind together events that share 

common features and outcomes as well as differentiate events that result in different outcomes. 

Importantly, hippocampus indexes associative links that are both directly experienced and 

extracted across multiple events. 

The mPFC then uses associative input from hippocampus to extract the latent causes that 

represent the complex multidimensional structure of the environment. Thus, the neural 

instantiation of schemas may itself be hierarchical, with hippocampus serving as an index of 

associative links between distributed neocortical patterns, and mPFC indexing the combination 

of associative links (represented in hippocampus) that predict similar outcomes. Damage to 

either of these brain regions would thus exert a profound impact on schema formation and 

access. Medial PFC input to the hippocampus may further guide the refinement and updating of 

schemas, emphasizing representation of goal-relevant commonalities and differences in 

hippocampus, while deemphasizing idiosyncratic details that are not generally predictive. 

Similarly, interactions between these structures mediate retrieval of schemas once formed to 
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guide selection of the most adaptive set of actions to take in new settings. Taken together, 

through specifying the mechanisms that support formation, expression, and updating of 

associative knowledge structures, the current chapter provides an overarching framework for 

how the fundamental properties of schemas may be understood through and implemented by 

neural mechanisms. 

 

7.1 Contributions to schema theory: A new avenue for pursuing testable predictions 

 
How does the proposed framework advance theoretical models of schemas? While the 

extant schema literature has demonstrated the profound effects that knowledge exerts on 

behavior, the lack of mechanistic clarity has limited the field’s ability to move beyond 

description to systematically test predictions derived from theoretical accounts. For example, a 

prominent prediction of schema theory is that schemas support flexible reasoning behavior. Yet 

without a concrete method of measuring a schema, failure to demonstrate a hypothesized 

behavioral effect may be attributed to a failure to invoke the hypothesized schema, with no way 

of falsifying the prediction within a given experimental context. As Taylor and Crocker (1981) 

argued in their seminal review on the topic, until the theoretical link between experience, 

schemas, and behavior is formalized in a falsifiable form, the heuristic value of schema theory 

will be limited. 

In the current chapter, we acknowledge the heuristic limitations of schema theory, and 

thus advocate for a formal, neural account that enables the field to test the underlying principles 

in falsifiable ways. First, if individuals construct schemas that capture goal-relevant features of 

the environment as Tolman predicted, then their representational structure should reflect this 
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organization. Consistent with this prediction, recent model-based fMRI work has directly 

compared the neural representations elicited during tasks that exhibit different relational 

structures while controlling the individual features encoded. Finding that representations are 

compressed for simpler relational task structures relative to more complex relational tasks 

provides direct support for the theoretical prediction that schema representations capture goal- 

relevant features of the environment. 

Second, if activation of existing schemas exerts a direct influence on learning and 

inference as Bartlett proposed, the degree of schema reinstatement should predict subsequent 

behavior. Indeed, as highlighted throughout this chapter, the introduction of neural decoding 

techniques has taken a critical step forward in establishing a direct, positive association between 

the degree of schema retrieval and a host of flexible behaviors, including reasoning and decision 

making. Finally, if Piaget’s proposal that schemas are updated and altered to incorporate new 

experiences is true, experiences that are inconsistent with prior schemas should elicit 

modifications to underlying representations and/or the formation of new schemas. As discussed 

above, new research in humans and animals has provided initial insights into how schemas are 

updated by elucidating how prediction errors modify existing memories. 

As these examples demonstrate, the mechanistic approach offered here, and afforded by 

modern neuroscience techniques, serves to complement and extend current schema theory, 

providing new avenues for testing and refining the core predictions. Importantly, we do not claim 

to have answered the longstanding question of how to define a schema. Nor do we argue that the 

simplified tasks reviewed here necessarily constitute the types of complex schemas examined in 

the cognitive literature. However, through tightly controlled investigations of what relational 

structures are evoked by certain experiences and how reinstatement of those structures influences 
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behavior, we may begin to develop a systematic understanding of the nature and function of 

these powerful mental structures. In accordance with this view, we note that Bartlett shared this 

general perspective 90 years ago when he argued that if it were possible to forgo “a single 

descriptive word” (i.e., schema) that “it would probably be best to speak of active, developing 

patterns” (Bartlett, 1932). With the introduction of neuroscientific techniques capable of 

measuring these patterns in situ as schemas are dynamically formed, updated, and expressed, 

we believe that this approach offers a complimentary path forward, lending explanatory power 

to current schema theory. 

 

8. Future Directions 

The findings reviewed here add to a growing body of evidence that dynamic mPFC— 

hippocampal processing and representation support a host of cognitive functions, providing 

efficient access to relevant knowledge during memory, inference, and decision-making. 

Because the individual elements of experience are thought to be distributed throughout the 

neocortex (Teyler & DiScenna, 1986), it is possible that the hippocampus and mPFC act as 

hierarchical indices that route behaviorally-relevant information to sensory-specific cortical 

areas to support behaviors in new situations (Mack & Preston, 2016). That is, we speculate that 

a schema may not be stored in any one region of the brain, but rather consists of hierarchical 

representations in sensory-specific cortical regions, with hippocampus and mPFC serving as 

indices to these distributed cortical patterns. The research outlined here may thus suggest a 

broader theoretical view of the functional role of the hippocampus and mPFC in supporting 

complex forms of cognition. Future work is needed to test this prediction directly. 

Another key question about schemas is the level of detail that may be represented. The 

bulk of the cognitive neuroscience work reviewed here suggests that associative structures 

come to represent overlapping commonalities while also preserving the elements of individual 
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events (e.g., Schlichting et al., 2015). In contrast to this view, other perspectives proffer that 

schemas consist of only the abstracted elements of experience, arguing that the loss of 

idiosyncratic details is an essential component of a schema (Ghosh & Gilboa, 2014). Although 

the hippocampal—mPFC circuit engaged during the tasks reviewed here share many of the 

properties of schemas, it will be left to future research to determine whether this framework 

functions similarly in more traditional schema tasks which have defined it solely as an 

abstracted mental structure. Furthermore, though many of the associative learning tasks 

described here facilitate disentangling the basic building blocks of associative knowledge 

formation, they do not allow for examination of the complex features of real-world schemas. 

An important avenue for future research thus entails examination of whether the neural circuit 

examined here accounts for schemas that scale in complexity, both in terms of content and 

structure. 

A final question ripe for future research concerns what role time plays in schema 

formation and retrieval. The original work by Bartlett found that schema-induced interference 

increased over time as individuals lost the details of individually encoded events, suggesting 

that these representations are fundamentally altered with consolidation. Yet to our knowledge, 

only one study to date has measured schemas over extended time periods in humans (Sommer, 

2017). Over the course of one year, repeated retrieval of associative structures shifted from the 

hippocampus to the PFC. It has been proposed that, over time, memories lose their association 

to the original context thereby becoming semanticized (O'Reilly et al., 2014). In light of the 

neural framework proposed here, memory consolidation may cause accelerated forgetting of 

idiosyncratic information while also strengthening goal-relevant commonalities and differences. 

Future research aimed at clarifying how these associative structures transform over time will 

provide additional insight into the mechanisms involved in schema formation and 
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transformation. In addition to mapping the trajectory of schematic change within an individual, 

mechanistic insight into schemas will further be gained from systematic investigations of how 

the neurobiological underpinnings of schemas change over the course of development. Because 

the hippocampus and mPFC continue to develop through adolescence, improvements in 

reasoning may thus be rooted in the development of neural structures that support schema 

formation and expression. 

In conclusion, early psychological theories of schemas have recently been augmented by 

a growing neuroscientific literature that clarifies the mechanisms involved in schema formation, 

updating, and expression. By quantifying schemas as “active, developing patterns” of neural 

activity, neuroscientific work in animals and humans has advanced schema theory by 

documenting how schematic knowledge is organized in neural terms and used to guide behavior 

in both familiar and new contexts. The deployment of new representational analysis approaches 

to neural data has thus opened a new door for research on schemas, providing several open 

avenues for future research, which may help to resolve many of the longstanding challenges for 

schema theory. 
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Box 1.1. Bayesian inference guides decisions under uncertainty 

 
In some cases, the relevant schema for a situation may be obvious based on contextual 

cues. For example, seeing a terminal with shops and gates, with planes docked at them, provides 

a clear signal that you are in an airport. However, because schemas are based on latent causes, in 

practice the relevant schema may not be immediately clear. In these cases, one must use 

available evidence to infer which schemas are mostly like to apply to the current situation. For 

example, if one is meeting a friend at an unfamiliar restaurant, one might not know initially 

whether it is a casual restaurant or a formal restaurant with a dress code (Box Figure 1.1A-B). 

Based on one’s previous experience learning about casual and formal dining contexts, one might 

know that, in casual contexts, one is more likely to see someone wearing jeans than someone 

wearing a suit. Conversely, formal contexts are more associated with suits than with jeans. When 

entering this new restaurant, seeing what individual patrons are wearing provides evidence about 

what kind of restaurant this is (Box Figure 1.1C). 

Bayes’ theorem defines the optimal way to update your beliefs to take into account both 

prior experience and new evidence (Box Figure 1.1D). In Bayes’ theorem, beliefs are expressed 

as probabilities; for example, before entering an unfamiliar restaurant, one might believe there is 

a 40% chance that it is a formal restaurant. According to Bayes’ theorem, prior beliefs (e.g., the a 

priori probability that a given restaurant will be formal) should be updated to reflect relevant 

observations (e.g., seeing a patron wearing a suit), forming what is known as a posterior 

probability that reflects one’s updated belief based on the new evidence. Because this calculation 

makes it possible to reason about possible situations in the absence of conclusive evidence, it 

provides a powerful method to make inferences about latent causes. A recent study found that 

mPFC represents the posterior probability of different potential, well-defined latent causes (Chan 
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et al., 2016; Figure 1.2F), suggesting that mPFC may be involved in computing 

something similar to Bayesian inference. 

However, exact Bayesian inference requires evaluating every possible latent cause that 

may be currently relevant, which is often infeasible. For example, when walking into a new 

restaurant context, one might be surprised to see a pool table, because this observation was 

unlikely under all of the different restaurant schemas that you have. According to the latent 

cause model (Gershman et al., 2017), there are two ways to respond to a situation that is not well 

explained by previously known latent causes. Faced with this unexpected outcome, one could 

update knowledge of restaurants to accommodate this new information that a restaurant can also 

include games like pool. Alternatively, one could decide that this new establishment is a 

different sort of context that cannot be accounted for in the restaurant schema, and thus attribute 

observations about this context to a different latent cause. In this case, a new schema would be 

formed, and the existing restaurant schema would not be modified. The latent cause model 

proposes that prior beliefs help to determine whether two events are due to the same latent cause 

or different latent causes. The model proposes that, all else being equal, two events that are 

nearby in time will tend to be related to the same latent cause. This prior belief makes temporally 

and spatially contiguous events more likely to be assumed to be related to the same latent cause 

(Gershman et al., 2017; Soto et al., 2014). The same mechanism may also inhibit integration of 

events that are temporally or spatially distant from one another (Cai et al., 2016; Rashid et al., 

2016; Zeithamova & Preston, 2017). More generally, multiple features of events, such as 

temporal, spatial, or conceptual distance (Morton et al., 2017) may influence one’s prior beliefs 

about whether two events have the same latent cause, influencing whether those events become 

integrated or separated within schematic knowledge. 
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Figure 1.1. Schematic depiction of the hypothesized roles of hippocampus and medial prefrontal 

cortex (mPFC) and their connections in schema formation, expression, and updating. 

Hippocampal binding processes support formation of associations between event elements both 

within and across events. Such associative representations are thought to be hierarchically 

organized, emphasizing not only commonalities across events, but goal-relevant differences 

when outcomes vary by context. Hippocampal input to the mPFC provides information about 

associative relationships and may signal when new events differ from previously experienced 

events to promote schema updating. Medial PFC uses associative input from the hippocampus to 

extract information about the multidimensional associative features that predict the same or 

different outcomes, thus representing the likelihood of potential latent causes. Medial PFC is 

further thought to reduce the dimensionality of memory representations to emphasize encoding 

of features that are the most goal-relevant or predictive within hippocampus. Such 

dimensionality reduction may further support mPFC control of hippocampal retrieval, allowing 

for reinstatement of the most behaviorally relevant knowledge and evaluation of different 

potential actions during schema expression. Brain illustration courtesy of Margaret L. 

Schlichting. 
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Figure 1.2. Hippocampus and mPFC form hierarchical representations that code the spatial, 

conceptual, and temporal contexts that lead to common or different outcomes. (A) Rodents 

learned to associate items (i.e., wells with scented digging material) with reward according to 

context-dependent rules. (B) In context 1, objects A and C were associated with reward, whereas 

in context 2, objects B and D were associated with reward. (C) After learning, hippocampal 

population responses demonstrated a hierarchical organization. When controlling for all other 

features, hippocampal responses showed anticorrelated activity (orange colors in the gradient) in 

the two contexts. Within the separate contexts, hippocampal responses reflected a hierarchical 

representation of similarities (blue colors in the gradient), with repetitions of the same item 

within the same context evoking the most similar responses, followed by valence, and then 

position (Panels A-C are adapted from McKenzie et al., 2014). (D) Learning about contextual 

associations allowed individuals to infer latent causes about where they were at within a global 

zoo context. Participants first learned about the probabilities of seeing individual types of 

animals (elephants, giraffes, hippos, lions, and zebras) in one of four sectors of the zoo (blue, 

yellow, pink, green). After learning, they were shown a sequence of animals and asked to infer 
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in which sector of the zoo they were located. (E) The actual probability distributions of seeing 

the five animals are depicted by the bars for each zoo context separately. The error bars reflect 

participants’ estimates of the probability distributions, collected after the experiment. (F) The 

mPFC represented the probability distributions for each sector, conditional on the observed 

animals, suggesting its role in representing a distribution of possible latent causes (Panels D-F 

are adapted from Chan et al., 2016). (G) During temporal community learning, participants view 

a sequence of objects (fractal images in this example) while performing an incidental task. 

Unbeknownst to participants, the sequence is generated from a network structure that defines the 

transition probabilities between objects and has three distinct temporal communities comprised 

of five objects (here depicted as nodes in the purple, green, and orange communities). After 

learning, the patterns of hippocampal response evoked by members of the same temporal 

community are more similar than different community members. Medial PFC responses are also 

increased during “walks” through a single temporal community (depicted by red arrows in the 

structure), suggesting its sensitivity to the community structure (Panel G is adapted from 

Schapiro et al., 2013, 2016). 
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Figure 1.3. Hippocampus and mPFC support assimilation and accommodation. (A) Participants 

learned to categorize insects according to rules that differed in their complexity. Some category 

problems required attention to a single feature dimension, others two or three feature dimensions 

(the latter is not pictured). Hippocampal activation patterns reflected the optimal organization for 

category discrimination after learning and shifted when participants learned to categorize 

representations according to a new category rule, reflecting accommodation of the category 

schema. (B) Regions, including mPFC, showing increased connectivity with hippocampus early 

in learning as participants learned the category rules (Panels A-B are adapted from Mack et al., 

2016). (C) Rodents learned a set of flavor-place associations (original pairs) within a spatial 

arena. Across initial training sessions, rodents increase their digging time in the spatial locations 

associated with cued flavors. (D) Rodents then updated their knowledge by learning new pairs in 

the same environment. While the original pairs were acquired over many sessions, rodents 

learned the locations of the new flavors in a single training session, suggesting that the new pairs 

were rapidly assimilated into an existing schema. (E) After 24 hours, hippocampal (HPC) lesions 

did not affect retrieval of the assimilated new pairs, but did prevent rodents from learning 

additional pairs (post-operative pairs) within the same environment. (F) Inactivation of mPFC 

(with CNQX) further prevented rodents from retrieving the assimilated new pairs relative to a 

saline (NaCl) control. (Panels C-F are adapted from Tse et al., 2007, 2011). 
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Box Figure 1.1. Bayes’ theorem specifies how beliefs about the world, described in terms of 

probabilities, should be updated based on new evidence. (A) In the context of a casual restaurant, 

a given patron is more likely to be wearing jeans than a suit. (B) In contrast, in a formal 

restaurant, seeing someone wearing a suit would be more likely. (C) When first entering an 

unfamiliar restaurant, one will have a baseline expectation, known as a prior belief, of whether it 

is a casual or a formal restaurant. One might then encounter new evidence such as seeing a 

restaurant patron wearing a suit. Based on this evidence, one should update one’s belief to reflect 

that the restaurant is most likely formal with a dress code; this revised belief is called a posterior. 

(D) Bayes’ theorem calculates the optimal posterior belief after taking into account prior beliefs 

and the new evidence. Photographs courtesy of Rusty Clark, Alan Light, and 1DayReview, 

licensed under CC BY 2.0. 
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